Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-15T18:06:40.100Z Has data issue: false hasContentIssue false

GaAs Heterojunction Bipolar Transistor Device and IC Technology

Published online by Cambridge University Press:  26 February 2011

Michael E. Kim
Affiliation:
TRW Inc., Electronics and Technology Division, One Space Park, Redondo Beach, CA 90278
Aaron K. Oki
Affiliation:
TRW Inc., Electronics and Technology Division, One Space Park, Redondo Beach, CA 90278
James B. Camou
Affiliation:
TRW Inc., Electronics and Technology Division, One Space Park, Redondo Beach, CA 90278
Gary M. Gorman
Affiliation:
TRW Inc., Electronics and Technology Division, One Space Park, Redondo Beach, CA 90278
Donald K. Umemoto
Affiliation:
TRW Inc., Electronics and Technology Division, One Space Park, Redondo Beach, CA 90278
Madjid E. Hafizi
Affiliation:
TRW Inc., Electronics and Technology Division, One Space Park, Redondo Beach, CA 90278
Leszek M. Pawlowicz
Affiliation:
TRW Inc., Electronics and Technology Division, One Space Park, Redondo Beach, CA 90278
Kjell S. Stolt
Affiliation:
TRW Inc., Electronics and Technology Division, One Space Park, Redondo Beach, CA 90278
Virginia M. Mulvey
Affiliation:
TRW Inc., Electronics and Technology Division, One Space Park, Redondo Beach, CA 90278
Get access

Abstract

GaAs/AlGaAs N-p-n heterojunction bipolar transistor (GaAs HBT) device and integrated circuit technology which offers key advantages over advanced silicon bipolar and III-V compound field-effect transistors is maturing towards system insertion. The TRW device and IC fabrication process, basic HBT dc and RF performance, examples of device and IC applications, and technology qualification work are presented and serves as a basis for discussing overall technology issues and impact. A relaxed 3-μm emitter-up, self-aligned base ohmic metal (SABM) HBT process and simplified molecularbeam epitaxial profiles are used for near-term producibility. The HBTs have simultaneous fT, fmax≈20–40 GHz and dc current gain ß≈50–100 at collector current density JC=3 kA/cm2 and Early voltage VA≈200–300 with capability for MSI-LSI integration levels. Versatile dc-20 GHz analog, 3–6 Gb/s digital, and 2–3 Gs/s A/D conversion functions are demonstrated with a common 3-μm SABM HBT process which facilitates single-chip multifunctional capability. Key improvements are realized over Si bipolar and GaAs-related FET (e.g. MESFET and HEMT) approaches in operational frequency, gain-bandwidth product, harmonic distortion, 1/f noise, power consumption, and size reduction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wakimoto, T., Akazawa, Y., and Konaka, S., IEEE J. Solid-State Circuits SC–23, 1345 (1988).Google Scholar
[2] Jensen, J. F., Salmon, L. G., Deakin, D. S., and Delaney, M. J., IEEE Int. Electron Device Meeting Dig., 476(1986).Google Scholar
[3] Mishra, U. K., Jensen, J. J., Brown, A. S., Thompson, M. A., Jelloian, L. M., and Beaubien, R. S., IEEE Electron Device Lett. EDL–9, 482 (1988).Google Scholar
[4] Patton, G. L., Iyer, S. S., Delage, S. L., Tiwari, S., and Stork, J. M. C., IEEE Electron Device Lett. EDL–9, 165 (1988).Google Scholar
[5] Chen, Y. K., Nottenburg, R. N., Panish, M. B., Hamm, R. A., and Humphrey, D. A., IEEE Electron Device Lett. EDL–10, 30 (1989).Google Scholar
[6] Evans, S. et. al., IEEE GaAs IC Symp. Dig., 109 (1987).Google Scholar
[7] Oki, A. K. et. al., IEEE GaAs IC Symp. Dig., 137 (1987).Google Scholar
[8] George, J. D. et. al., IEEE Int. Solid-State Circuits Conf. Dig., 186 (1989).Google Scholar
[9] Bayraktaroglu, B., Camilleri, N., and Lambert, S. A., IEEE Trans. Microwave Theory Tech. MTT–36,1869 (1988).Google Scholar
[10] Kim, M. E. et. al., IEEE GaAs IC Symp. Dig., 117 (1988).Google Scholar
[11] Higgins, J. A., IEEE GaAs IC Symp. Dig., 33 (1988).Google Scholar
[12] Oki, A. K., Kim, M. E., Gorman, G. M., and Camou, J. B., IEEE Trans. Microwave Theory Tech. MTT–36, 1958 (1988); G. M. Gorman et. al., 1989 IEEE MTT-S Int. Microwave Symp.Google Scholar
[13] Nagata, K., Nakajima, O., Yamauchi, Y., Nittono, T., Ito, H., and Ishibashi, T., IEEE Trans. Electron Devices ED–35, 2 (1988).CrossRefGoogle Scholar
[14] Morizuka, K., Asaka, M., lizuka, N., Tsuda, K., and Obara, M., IEEE Electron Device Lett. EDL–8, 598 (1988).Google Scholar
[15] Bayraktaroglu, B., Camilleri, N., Shih, H. D., and Tserng, H. Q., IEEE MTT-S Int. Microwave Symp. Dig., 969 (1987).Google Scholar