Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T22:57:57.752Z Has data issue: false hasContentIssue false

GaAs HEMT Reliability and Degradation Mechanisms after Long Term Stress Testing

Published online by Cambridge University Press:  31 January 2011

Erica Ann Douglas
Affiliation:
rede0001@ufl.eduEricaADouglas@gmail.comUniversity of FloridaMaterials Science & Engineering32611FloridaUnited States
David P. Cheney
Affiliation:
djcheney@ufl.eduUniversity of FloridaElectrical & Computer Engineering32611FloridaUnited States
Ke Hung P. Chen
Affiliation:
nimochen@ufl.eduUniversity of FloridaChemical Engineering32611FloridaUnited States
Chih-Yang P. Chang
Affiliation:
chang.chihyang@gmail.comUnited States
Lii-Cherng P. Leu
Affiliation:
g873524@ufl.eduUniversity of FloridaChemical Engineering32611FloridaUnited States
Brent P. Gila
Affiliation:
bgila@ufl.eduUnited States
Cammy R. Abernathy
Affiliation:
caber@ufl.eduUnited States
Stephen J. Pearton
Affiliation:
spear@ufl.eduUnited States
Get access

Abstract

GaAs based metamorphic and pseudomorphic high electron mobility transistors (HEMTs) under DC and thermal stress were studied. InAlAs/InGaAs MHEMTs grown on GaAs substrates were stressed at a drain voltage bias of 2.7V for 36 hours as well as thermally stressed at 250°C for 36 hours. Under both stress conditions, the drain current density decreased about 12.5%. The gate current, however, increased more after the thermal storage as opposed to DC bias. Reaction of the Ohmic contact with the underlying semiconductor was the main cause of degradation after thermal stressing. Transmission electron microscopy verified that gate sinking occurred in devices that underwent DC bias stressing. InGaAs pHEMTs that received a 1000 hour lifetime stress test from a commercial vendor showed similar degradation as virgin devices when stressed under DC bias for 24 hours. Virgin devices that were thermally stressed while undergoing DC bias showed minimal degradation up to 120°C, but exhibited catastrophic failure at 140°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Roesch, W. J., Microelectronics Rel. 46, 1218 (2006).10.1016/j.microrel.2006.02.008Google Scholar
2. del Alamo, J. A. and Villanueva, A. A., IEDM Tech.Dig., 2004, pp. 1019–1022.Google Scholar
3. Kukai, Y.K., Sugitani, S., Enoki, T. and Yamane, Y., IEEE Trans. Device and Materials Reliability, 8,289 (2008).10.1109/TDMR.2008.916539Google Scholar
4. Meneghesso, G., Canali, C., Cova, P., De Bortoli, E., and Zanoni, E., IEEE Electron Device Lett., 17, 232 (1996).10.1109/55.491839Google Scholar
5. Chou, Y. C., Grundbacher, R., Leung, D., Lai, R., Liu, P. H., Kan, Q.,Beidenbender, M., Wojtowicz, M., Eng, D., and Oki, A., IEEE Electron Device Lett., 25, 64 (2004).10.1109/LED.2003.822666Google Scholar
6. Roesch, W., GaAs REL Workshop, pp.119126, 1999.Google Scholar
7. Villanueva, A.A., del Alamo, J.A., Hisaka, F., Hayashi, K. and Somerville, M., IEEE Trans. Device and Materials Reliability, 8, 283 (2008)10.1109/TDMR.2008.920304Google Scholar
8. Borgarino, M., Menozzi, R., Baeyens, Y., Cova, P., and Fantini, F., IEEE Trans. Electron Devices, 45, 366 (1998).10.1109/16.658668Google Scholar
9. Leoni, R. E. and Hwang, J. C. M., IEEE Trans. Electron Devices, 46, 1608 (1999).10.1109/16.777147Google Scholar
10. Choi, K. J. and Lee, J. L., J. Electron. Mater., 30, 885 (2001).10.1007/s11664-001-0076-1Google Scholar
11. Meneghesso, G., Paccagnella, A., Haddab, Y., Canali, C., and Zanoni, E., Appl. Phys. Lett. 69, 10 (1996)10.1063/1.117598Google Scholar
12. Hisaka, T., Nogami, Y., Sasaki, H., Villanueva, A. A., Hasuike, A., Yoshida, N., and del Alamo, J. A., Proc. Gallium Arsenide Integr. Circuits Symp., 2003, pp. 67–70.Google Scholar
13. Villanueva, A., del Alamo, J. A., Hisaka, T., and Ishida, T., IEDM Tech. Dig., 2007, pp. 393–396.Google Scholar
14. Mertens, S. and del Alamo, J., IEEE Trans. Eletron Devices, 49,1849 (2002).10.1109/TED.2002.804698Google Scholar
15. Dammann, M., Chertouk, M., Jantz, W., Köhler, K., Weimann, G., Microelectronics Reliability, 40, 1709 (2000)10.1016/S0026-2714(00)00164-5Google Scholar
16. Thayne, I., Elgaid, K., Moran, D., Cao, X., Boyd, E., McLelland, H., Holland, M., Thoms, S. and Stanley, C., Thin Solid Films, 515, 4373 (2007).10.1016/j.tsf.2006.07.104Google Scholar
17. Marsh, P. F., Whelan, C. S., Hoke, W. E., Leoni, R. E. and Kazior, T. E., Microelectron. Reliability, 42, 997 (2002).10.1016/S0026-2714(02)00063-XGoogle Scholar
18. Dammann, M., Leuther, A., Quay, R., Meng, M., Konstanzer, H., Jantz, W., and Mikulla, M., Microelectronics Reliability, 44, 939 (2004).10.1016/j.microrel.2004.01.015Google Scholar