Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T20:41:39.462Z Has data issue: false hasContentIssue false

GaAs Growth on Micro and Nano Patterned Ge/Si1-XGeX and Si Surfaces

Published online by Cambridge University Press:  01 February 2011

Ganesh Vanamu
Affiliation:
Department of Chemical and Nuclear Engineering & Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM-87131
Abhaya K. Datye
Affiliation:
Department of Chemical and Nuclear Engineering & Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM-87131
Ralph L. Dawson
Affiliation:
Center for High Technology Materials, 1313 Goddard SE, Albuquerque NM 87106
Saleem H. Zaidi
Affiliation:
Gratings, Inc., 2700 B Broadbent Parkway, N.E, Albuquerque, NM 87107
Get access

Abstract

We show heteroepitaxial growth of GaAs on Ge/SiGe grown on nanometer-scale grating structures. Conventional lithography techniques were combined with reactive ion and wet-chemical etching to fabricate 1-D patterns of silicon posts. The quality of the GaAs layers was investigated using high-resolution x-ray diffraction (HRXRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), photoluminescence (PL) and etch pit density (EPD) measurements. Our results show significant improvement in the quality of heteroepitaxial layers grown on nano patterned structures compared to those on the unpatterned silicon. The optical quality of the GaAs/Ge/SiGe on nano-scale patterned silicon was comparable to that of single crystal GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Groenert, M. E., Leitz, C. W., Pitera, A. J., Yang, V., Lee, H., Ram, R. J., and Fitzgerald, E. A., J. Appl. Phys. 93, 362 (2003).10.1063/1.1525865Google Scholar
2 Ringel, S. A., Carlin, J. A., Andre, C. A., Wilt, D. M., Clark, E. B., Jenkins, P., Scheiman, D., Leitz, C. W., Allerman, A. A., and Fitzgerald, E. A., Prog. Photovoltaics 10, 417 (2002).10.1002/pip.448Google Scholar
3 Masini, G., Colace, L. and Assanto, G., Appl. Phys. Lett. 82, 2524 (2003)10.1063/1.1567046Google Scholar
4 Oh, J., et al., IEEE Jour. Quan. Elect. 38, 1238 (2002).Google Scholar
5 Colace, L., Masini, G., Galluzzi, F., Assanto, G., Capellini, G., Gaspare, L. Di, Palange, E., and Evangelisti, F., Appl. Phys. Lett. 72, 3175 (1998).10.1063/1.121584Google Scholar
6 Calarco, R., et al., Thin Solid Films 391, 138 (2001).10.1016/S0040-6090(01)00971-3Google Scholar
7 Sieg, R. M., Carlin, J. A., Boeckl, J. J., Ringel, S. A., Currie, M. T., Ting, S. M., Langdo, T. A., Taraschi, G., Fitzgerald, E. A., Keyes, B. M., Appl. Phys. 73, 3111 (1998).Google Scholar
8 Chriquia, Y., Largeaua, L., Patriarchea, G., Saint-Gironsa, G., Bouchoulea, S., Sagnesa, I., Bensahelb, D., Campidellib, Y., Kermarrecb, O., Journal of Crystal Growth 265, 53 (2004).10.1016/j.jcrysgro.2004.01.038Google Scholar
9 Carlina, J. A.) and Ringel, S. A., Fitzgerald, E. A., Bulsara, M., Keyes, B. M., Appl. Phys. 76, 3111 (2000).Google Scholar
10 Ting, S. M. and Fitzgerald, E. A., J. Appl. Phys. 87, 2618 (2000).10.1063/1.372227Google Scholar
11 Ismail, K., Meyerson, B. S., and Wang, P. J., Appl. Phys. Lett. 58, 2117 (1991).10.1063/1.104978Google Scholar
12 Nozawa, K. and Horikoshi, Y., Jpn J. Appl. Phys. 28, L668 (1991).10.1143/JJAP.30.L668Google Scholar