Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-27T13:25:54.756Z Has data issue: false hasContentIssue false

Fundamental Investigation of Ferromagnetic Shape Memory Alloys: A New Perspective

Published online by Cambridge University Press:  01 February 2011

Matthew R. Sullivan
Affiliation:
Thin Films & Nanosynthesis Laboratory, Materials Program, Mechanical and Aerospace Engineering Department, State University of New York at Buffalo, Buffalo, NY, USA
Daniel A. Ateya
Affiliation:
Thin Films & Nanosynthesis Laboratory, Materials Program, Mechanical and Aerospace Engineering Department, State University of New York at Buffalo, Buffalo, NY, USA
Steven Pirotta
Affiliation:
Thin Films & Nanosynthesis Laboratory, Materials Program, Mechanical and Aerospace Engineering Department, State University of New York at Buffalo, Buffalo, NY, USA
Ashish A. Shah
Affiliation:
Thin Films & Nanosynthesis Laboratory, Materials Program, Mechanical and Aerospace Engineering Department, State University of New York at Buffalo, Buffalo, NY, USA
G. H. Wu
Affiliation:
State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Harsh Deep Chopra*
Affiliation:
Thin Films & Nanosynthesis Laboratory, Materials Program, Mechanical and Aerospace Engineering Department, State University of New York at Buffalo, Buffalo, NY, USA
*
* Corresponding Author. E-Mail: hchopra@eng.buffalo.edu
Get access

Abstract

In the present study, the evolution of micromagnetic structure and microstructure is studied in-situ both as a function of temperature and applied magnetic field, using single crystal Fe-Pd and Ni-Mn-Ga Heusler alloys. Through the development of a novel technique called ‘Magnetic Transition Spectrum’ to study temperature dependent domain dynamics, the relative sequence of micromagnetic reconfiguration with respect to the martensitic transformation has been determined for the first time. Results show that the FSMAs may be viewed as magnetic mosaics, a new perspective, which is also more amenable to modeling the physical properties of these alloys. Finally, the concept of magnetic mosaics has been used to synthesize a novel class of materials with engineered magnetic anisotropies, and is briefly discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ullakko, K., Huang, J. K., Kantner, C., O'Handley, R. C., and Kokorin, V. V., Appl. Phys. Lett. 69, 1966 (1996).10.1063/1.117637Google Scholar
2. Chernenko, V. A., Cesari, E., Kokorin, V. V., and Vitenko, I. N., Scr. Metall. 33, 1239 (1995).10.1016/0956-716X(95)00370-BGoogle Scholar
3. Hu, F-X., Shen, B. G., and Sun, J-R., Appl. Phys. Lett. 76, 3460 (2000).10.1063/1.126677Google Scholar
4. Webster, P. J., Ziebeck, K. R. A., Town, S. L., and Peak, M. S., Philos. Mag. B 49, 295 (1984).10.1080/13642817408246515Google Scholar
5. Sohmura, T., Oshima, R., and Fujita, F. E., Scr. Metall. 14, 855 (1980).10.1016/0036-9748(80)90304-XGoogle Scholar
6. Chopra, H. D., Yang, D. X., Chen, P. J., Brown, H. J., Swartzendruber, L. J., and Egelhoff, W. F. Jr, Phys. Rev. B. 61, 15312 (2000).10.1103/PhysRevB.61.15312Google Scholar
7. Chopra, H. D. and Wuttig, Manfred, Journal De Physique IV, Colloque C8, supplement au Journal de Physique III vol. 5, C8/157 (1995).Google Scholar
8. Muto, S., Oshima, R., and Fujita, F. E., Acta Metall. 38, 685 (1990).10.1016/0956-7151(90)90224-5Google Scholar
9. Chopra, H. D., Sullivan, M. R., and Swartzendruber, L. J., U.S. Patent (Provisional), August 27, 2003, “Magnetic phase transition and magnetic structure characterization using modified Barkhausen effect and method of using the same”.Google Scholar
10. Barkhausen, H., Physik. Z. 20, 401 (1919).Google Scholar
11. Chopra, H. D., Hicho, G. E., and Swartzendruber, L. J., Materials Evaluation 59, 1215 (2001).Google Scholar
12. Sullivan, M. R. and Chopra, H. D., Phys. Rev. B (in review).Google Scholar
13. Bowles, J. S., Barrett, C. S., and Guttman, L., J. Met. 188, 1478 (1950).Google Scholar
14. Basinski, Z. S., and Christian, J. W., Acta Metall. 2, 101 (1954).10.1016/0001-6160(54)90100-5Google Scholar
15. Basinski, Z. S., and Christian, J. W., Acta Metall. 2, 148 (1954).10.1016/0001-6160(54)90104-2Google Scholar
16. Basinski, Z. S., and Christian, J. W., Acta Metall. 2, 101 (1954).10.1016/0001-6160(54)90100-5Google Scholar
17. Chopra, H. D., Bailly, C., and Wuttig, M., Acta Mater. 44, 747 (1996).10.1016/1359-6454(95)00183-2Google Scholar
18. Chopra, H. D., Roytburd, A. and Wuttig, Manfred, Metallurgical and Materials Transactions A 27, 1695 (1996).10.1007/BF02649827Google Scholar
19. Chopra, H. D., Ph.D. Thesis, University of Maryland (1993).Google Scholar
20. Chopra, H. D., Ji, C., Kokorin, V. V., Phys. Rev. B. Rapid Commun. 61, R14913 (2000).10.1103/PhysRevB.61.R14913Google Scholar
21. Vasil'ev, A. N., Bozhko, A. D., Khovailo, V. V., Dikstein, I. E., Shavrov, V. G., Buchelnikov, V. D., Matsumoto, M., Suzuki, S., Takagi, T., and Tani, J., Phys. Rev. B. 59, 11131120 (1999).10.1103/PhysRevB.59.1113Google Scholar