Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-17T12:31:32.406Z Has data issue: false hasContentIssue false

Fundamental Consideration on Carrier Transport in Amorphous Silicon Superlattices

Published online by Cambridge University Press:  21 February 2011

Y. L. Jiang
Affiliation:
Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30043, Taiwan, Republic of, China
H. L. Hwang
Affiliation:
Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30043, Taiwan, Republic of, China
Get access

Abstract

Basic consideration of parameters including electron de Broglie wavelength, resonant tunneling time (τr) and inelastic scattering tunneling (τi) were studied to identify the intrinsic tunneling properties of amorphous double—barrier (DB) structure. The order of magnitude of τri. of amorphous DB structure is about 5 to 12 which is far beyond that of crystalline case which is 1 to 2. The transmissivity versus applied voltage or versus electron energy were calculated to identify the influence of barrier height, barrier thickness and electron effective mass. The influence of carrier distribution will also be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pereyra, I. et al., J. Non-Cryst. Solids 97&98, 871 (1987).Google Scholar
2. Pereyra, I., Carreno, M.P., and Alvarez, F., J. Non-Cryst. Solids 110, 175 (1989).Google Scholar
3. Miyazaki, S., Ihara, Y. and Hirose, M., Phys. Rev. Lett. 59, 125 (1987).Google Scholar
4. Nebel, C.E., Jiang, Y.L. and Hwang, H.L., in Proceedings of Materials Research Society, Vol 118 (Pittsburgh, PA, 1988), p.361.Google Scholar
5. Jiang, Y.L. and Hwang, H.L., Nebel, C.E. and Bauer, G.H., in extended Abstracts of the 20th Conference on SSDM (Tokyo, 1988), p.239.Google Scholar
6. Jiang, Y.L. and Hwang, H.L., in Proceedings of the 19th ICPS (Warsaw, 1988), p.1605; Jpn. J. Appl. Phys. 27, L2434 (1988); in Proceedings of Materials Research Society, Vol.149 (Pittsburgh, 1989), p.687;Google Scholar
Jiang, Y.L. and Hwang, H.L., in Proceedings of the 19th ICPS Vol.192 (Pittsburgh, 1990), p.335; IEEE Trans. Electron Devices ED- 36, 2816 (1989); Appl. Sur. Sci. (to be published).Google Scholar
7 Sandomirskii, V.B., Sov. Phys. JETP, Vol.16, 1630 (1963).Google Scholar
8. Wronski, C.R., Persans, P.D. and Abeles, B., Appl. Phys. Lett. 49, 569 (1986).Google Scholar
9. Tsu, R., J. Non-Cryst. Solids 75 463 (1985).Google Scholar
10. Buttiker, M., IBM J. Res. Develop., 32, 63 (1988).Google Scholar
11. Jonson, M. and Grincwajg, A., Appl. Phys. Lett. 51, 1729 (1987).Google Scholar
12. Gupta, R. and Ridley, B.K., J. Appl. Phys., 64, 3089 (1988).Google Scholar
13. Tsuchiya, M., Matsusue, T., and Sakaki, H., Phys. Rev. Lett., 59, 2356 (1987).Google Scholar
14. Sakaki, H., Matsusue, T., and Tsuchiya, M., IEEE J. Quantum Electronics, 25, 2498 (1989).Google Scholar
15. Mendez, E.E., Calleja, E., and Wang, W.I., Appl. Phys. Lett. 53, 977 (1988).Google Scholar
16. Jiang, Y.L., P.h.D. Thesis, Tsing Hua University 1990.Google Scholar
17. Wu, J.S. et al., IEEE Electron Devices Lett., 10, 301 (1989).Google Scholar
18. Wu, J.S., et al., Appl. Phys. Lett., 57, 2311 (1990).Google Scholar