Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-19T02:42:17.530Z Has data issue: false hasContentIssue false

Fullerene Superconductors: Effects of Molecular Orientation and Valence

Published online by Cambridge University Press:  15 February 2011

T. Yildirim
Affiliation:
National Institute of Standards and Technology, Gaithersburg MD 20899 University of Pennsylvania, Philadelphia, PA 19104
L. Barbedette
Affiliation:
University of Pennsylvania, Philadelphia, PA 19104
K. KniaŹ
Affiliation:
University of Pennsylvania, Philadelphia, PA 19104
J. E. Fischer
Affiliation:
University of Pennsylvania, Philadelphia, PA 19104
C. L. Lin
Affiliation:
Temple University, Philadelphia PA 19122
N. Bykovetz
Affiliation:
Temple University, Philadelphia PA 19122
P. W. Stephens
Affiliation:
State University of New York, Stony Brook NY 11794
P. E. Sulewski
Affiliation:
AT&T Bell Labs, Murray Hill NJ 07974
S. C. Erwin
Affiliation:
Naval Research Laboratory, Washington DC 20375
Get access

Abstract

We report results of high-resolution x-ray diffraction, dc magnetometry and Raman scattering on the quaternary alkali and ternary mixed alkali-alkaline earth fullerene compounds Na2RbxCs1−x C60 (0 < x < 1) and Rb3−δ BaδC60 (δ ∼ 0.4 and 2.0). These have the same cubic space lattices as K3C60 and Rb3C60 however the former exhibit long-range orientational correlations with Pa3 symmetry and the latter have N > 3 delocalized electrons per molecule. We show that the dependence of Tc on lattice constant is much steeper for the ordered as compared to the merohedrally disordered phases with N = 3, and that within the constraint of cubic symmetry Tc decreases significantly with increasing N > 3, in disagreement with some theoretical predictions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Stephens, P. W., Mihaly, L., Lee, P. L., Whetten, R. L., Huang, S-M., Kaner, R. B., Diederich, F. and Holczer, K., Nature 351, 632 (1991).Google Scholar
[2] Yildirim, T., Fischer, J. E., Harris, A. B., Stephens, P. W., Liu, D., Brard, L., Strongin, R. M. and Smith, A. B. III, Phys. Rev. Lett. 71, 1383 (1993).Google Scholar
[3] Kniaź, K., Fischer, J. E., Zhu, Q., Rosseinsky, M. J., Zhou, O. and Murphy, D. W., Solid State Commun. 88, 47 (1993).Google Scholar
[4] Fleming, R. M., Ramirez, A. P., Rosseinsky, M. J., Murphy, D. W., Haddon, R. C., Zahurak, S. M. and Makhija, A. V., Nature 352, 787 (1991).Google Scholar
[5] Yildirim, T., Fischer, J. E., Dinnebier, R., Stephens, P. W. and Lin, C. L., Solid State Comm. (in press).Google Scholar
[6] Erwin, S. C. and Bruder, C., Physica B199–200, 600 (1994).Google Scholar
[7] Yildirim, T., Hong, S., Harris, A. B. and Mele, E. J., Phys. Rev. B 48, 12262 (1993).Google Scholar
[8] Prassides, K., Christides, C., Thomas, I.M., Mizuki, J., Tanigaki, K., Horosawa, I. and Ebbesen, T. W., Science 263, 950 (1994).Google Scholar
[9] Hirosawa, I., Mizuki, J., Tanigaki, K. and Kimura, H., Solid State Comm. 89, 55 (1994).Google Scholar
[10] Zhou, O., Vaughan, G. B. M., Zhu, Q., Fischer, J. E., Heiney, P. A., Coustel, N., McCauley, John P. Jr. and Smith, A. B. III, Science 255, 833 (1992).Google Scholar
[11] Mizuki, J., Takai, M., Takahashi, H., Mori, N., Tanigaki, K., Horosawa, I. and Prassides, K., Phys. Rev. B50, 3466 (1994).Google Scholar
[12] Prassides, K. (private communication).Google Scholar
[13] Schirber, J. E., Overmyer, D. L., Bayless, W. R., Rosseinsky, M. J., Murphy, D. W., Zhu, Q., Zhou, O., Kniaź, K. and Fischer, J. E., J. Phys. Chem. Solids. 54, 1427 (1993).Google Scholar
[14] Tanigaki, K., in Recent Advances in the Chemistry and Physics of Fullerenes, edited by Kadish, K. M. and Ruoff, R. S. (Electrochemical Society, Princeton NJ 1994) p. 546.Google Scholar
[15] Kortan, A. R., Kopylov, N., Fleming, R. M., Zhou, O., Theil, F. A., Haddon, R. C. and Rabe, K. M., Phys. Rev. B 47, 13070 (1993).Google Scholar
[16] Kuzmany, H., Matus, M. and Burger, B., Adv. Mater. 6, 731 (1994).Google Scholar
[17] Holzwarth, N. A. W., DiVincenco, D. P., Tatar, R. C. and Rabii, S., Int. J. Quantum Chem. 23, 1223 (1983).Google Scholar
[18] Preil, M. E, Fischer, J. E., DiCenzo, S. B. and Wertheim, G. K., Phys. Rev. B 30, 3536 (1984).Google Scholar
[19] Fischer, J. E., Kim, H. J. and Cajipe, V. B., Phys. Rev. B 36, 4449 (1987). Phys. Rev. B 49, 7620 (1994).Google Scholar
[20] Erwin, S.C. and Pederson, M.R., Phys. Rev. Lett. 67, 1610 (1991).Google Scholar
[21] Gelfand, M.P. and Lu, J.P., Phys. Rev. Lett. 68, 1050 (1992).Google Scholar
[22] Erwin, S.C. and Mele, E.J., Phys. Rev. B 50 5689 (1994).Google Scholar
[23] Zhu, Q., Fischer, J. E. and Cox, D. E., in Springer Series in Solid State Sciences 117, 168 (1994).Google Scholar
[24] Jánossy, A., Chauvet, O., Pekker, S., Cooper, J. R. and Forró, L., Phys. Rev. Lett. 71, 1091 (1993).Google Scholar
[25] Lof, R. W., Veenendal, M. A. van, Koopmans, B., Jonkman, H. T. and Sawatzky, G. A., Phys. Rev. Lett. 68, 3924 (1992).Google Scholar
[26] Lu, J.-P., Phys. Rev. B 49, 5687 (1994).Google Scholar
[27] Chakravarty, S., Gelfand, M. P. and Kivelson, S., Science 254, 270 (1991).Google Scholar
[28] Sarker, S. K., Phys. Rev. B (in press).Google Scholar