Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T21:36:20.068Z Has data issue: false hasContentIssue false

From Feldspar Glass to Zirconia: State of the Art of Ceramics for Dental Applications

Published online by Cambridge University Press:  01 February 2011

Isabelle Denry*
Affiliation:
denry.1@osu.edu, Ohio State University, Dentistry, 305 W 12th Avenue, Columbus, OH, 43210, United States, 614-292-0905, 614-292-9422
Get access

Abstract

The evolution of dental ceramics over the past four decades has been remarkable in light of the increase in the diversity of materials and fabrication techniques that have become available. As a consequence, the applications and indications for all-ceramic materials continue to expand. The purpose of the present article is to review the evolution of dental ceramics from the various aspects of crystalline phases, glassy matrix, flaws and in vivo performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Denry, I. In, Ceramics.: JM, Powers, RL, Sakaguchi, editors. Craig's Restorative Dental Materials. St. Louis: Mosby Elsevier; 2006. p 443465.Google Scholar
2 KJ, Anusavice, Kakar, K, Ferree, N. Which mechanical and physical testing methods are relevant for predicting the clinical performance of ceramic-based dental prostheses? Clinical Oral Implants Research 2007;18(s3):218231.Google Scholar
3 BR, Lawn, Pajares, A, Zhang, Y, Deng, Y, Polack, MA, Lloyd, IK, Rekow, ED, Thompson, VP. Materials design in the performance of all-ceramic crowns. Biomaterials 2004;25(14):28852892.Google Scholar
4 Kelly, JR. Perspectives on strength. Dental Materials 1995;11(2):103110.Google Scholar
5 MJ, Heffernan, SA, Aquilino, AM, Diaz-Arnold, DR, Haselton, CM, Stanford, MA, Vargas. Relative translucency of six all-ceramic systems. Part I: Core materials. Journal of Prosthetic Dentistry 2002;88(1):49.Google Scholar
6 Denry, I, JR, Kelly. State of the art of zirconia for dental applications. Dent Mater 2008;24(3):299307.Google Scholar
7 JA, Holloway, RB, Miller. The Effect of Core Translucency on the Aesthetics of All-Ceramic Restorations. Pract. Perio. and Aesth. Dent. 1997;59(5):567–76.Google Scholar
8 Mazzi, F. The crystal structure of tetragonal leucite. American Mineralogist 1976;61:108115.Google Scholar
9 Weinstein, M, LK, Weinstein, Katz, S, AB, Weinstein; Fused porcelain-to-metal teeth. United States patent 3,052,982.1962 Sept.11.Google Scholar
10 JR, Mackert, Russell CM. Leucite crystallization during processing of a heat-pressed dental ceramic. International Journal of Prosthodontics 1996;9(3):261–5.Google Scholar
11 JR, Mackert, SW, Twiggs, AL, Evans-Williams. Isothermal anneal effect on leucite content in dental porcelains. Journal of Dental Research 1995;74(6):1259–65.Google Scholar
12 IL, Denry, JA, Holloway, HO, Colijn. Phase Transformations in a Leucite-Reinforced Pressable Dental Ceramic. J Biomed Mater Res 2001;54:351359.Google Scholar
13 IL, Denry, JRJ, Mackert, JA, Holloway, SF, Rosenstiel. Effect of Cubic Leucite Stabilization on the Flexural Strength of Feldspathic Dental Porcelain. J Dent Res 1996;75:19281935.Google Scholar
14 Hirao, K, Soga, N, Kunugi, M. Thermal expansion and structure of leucite-type compounds. The Journal of Physical Chemistry 1976;80:16121616.Google Scholar
15 RC, Garvie, RH, Hannink, RT, Pascoe. Ceramic steel? Nature 1975;258:703704.Google Scholar
16 Basu, B, Vleugels, J, Van Der Biest, O. Transformation behaviour of tetragonal zirconia: role of dopant content and distribution. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2004;366(2):338347.Google Scholar
17 EC, Subbarao. overview, Zirconia-an. In: AH, Heuer, LW, Hobbs, editors. Science and technology of zirconia. Columbus, OH: The American Ceramic Society; 1981. p 124.Google Scholar
18 RHJ, Hannink, PM, Kelly, BC, Muddle. Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 2000;83(3):461487.Google Scholar
19 JR, Kelly, Denry, I. Stabilized zirconia as a structural material. Dent Mater 2008;24(3):289298.Google Scholar
20 IL, Denry, JA, Holloway, SF, Rosenstiel. Crystallization kinetics of a low-expansion feldspar glass for dental applications. Journal of Biomedical Materials Research 1998;41(3):398404.Google Scholar
21 Ruiz, L, MJ, Readey. Effect of heat-treatment on grain size, phase assemblage, and mechanical properties of 3 mol% Y-TZP. Journal of the American Ceramic Society 1996;79(9):23312340.Google Scholar
22 Guazzato, M, Albakry, M, Quach, L, MV, Swain. Influence of surface and heat treatments on the flexural strength of a glass-infiltrated alumina/zirconia-reinforced dental ceramic. Dent Mater 2005;21(5):454463.Google Scholar
23 Guazzato, M, Albakry, M, MV, Swain, SP, Ringer. Microstructure of alumina- and alumina/zirconia-glass infiltrated dental ceramics. Bioceramics 15; 2003. p 879882.Google Scholar
24 Guazzato, M, Albakry, M, SP, Ringer, MV, Swain. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics. Dent Mater 2004;20(5):441448.Google Scholar
25 SC, Oh, JK, Dong, Luthy, H, Scharer, P. Strength and microstructure of IPS Empress 2 glass-ceramic after different treatments. International Journal of Prosthodontics 2000;13(6):468472.Google Scholar
26 Denry, I, Holloway, J. Effect of additives on the microstructure and thermal properties of a mica-based glass-ceramic. J Biomed Mater Res (Appl Biomater) 2002;63(2):146151.Google Scholar
27 DG, Grossman. Machinable glass-ceramic based on tetrasilicic mica. J Am Ceram Soc 1972;55:446–49.Google Scholar
28 Denry, I, Lejus, A, Thery, J, Masse, M. Preparation and characterization of a new lithium-containing glass-ceramic. Mat Res Bull 1999;34(10/11):16151627.Google Scholar
29 DG, Grossman. Structure and physical properties of Dicor/MGC glass-ceramic. In: WH, Mormann, editor; 1991; University of Zurich, Switzerland. Quintessence Publishing Co.Google Scholar
30 DG, Grossman; Corning Glass Works, assignee. Glass-ceramic articles with oriented mica crystals and method. US patent 3,905,824. 1975 Sept. 16.Google Scholar
31 Denry, I, Baranta, G, JA, Holloway, PK, Gupta. Effect of processing variables on texture development in a mica-based glass-ceramic. J Biomed Mater Res 2003;64B(2):7077.Google Scholar
32 Denry, I, Holloway, J. Effect of magnesium content on the microstructure and crystalline phases of fluoramphibole glass-ceramics. J Biomed Mater Res (Appl Biomater) 2000;53(4):289296.Google Scholar
33 Denry, I, JA, Holloway. Elastic constants, Vickers hardness, and fracture toughness of fluorrichterite-based glass-ceramics. Dent Mater 2004;20(3):213219.Google Scholar
34 IL, Denry, JA, Holloway. Effect of sodium content on the crystallization behavior of fluoramphibole glass-ceramics. J Biomed Mater Res (Appl Biomater) 2002;63(1):4852.Google Scholar
35 Denry, I, JA, Holloway. Effect of crystallization heat treatment on the microstructure and biaxial strength of fluorrichterite glass-ceramics. J Biomed Mater Res (Appl Biomater) 2007;80B(2):454459.Google Scholar
36 Denry, I, JA, Holloway. Texture Development in Heat-Pressed Fluoramphibole Glass-Ceramics. J Dent Res 2002;81:223[Abstract #1692].Google Scholar
37 IL, Denry, JA, Holloway, RJ, Nakkula, JD, Walters. Effect of niobium content on the microstructure and thermal properties of fluorapatite glass-ceramics. Journal of Biomedical Materials Research Part B-Applied Biomaterials 2005;75B(1):1824.Google Scholar
38 Gremillard, L, Epicier, T, Chevalier, J, Fantozzi, G. Effect of cooling rate on the location and chemistry of glassy phases in silica-doped 3Y-TZP ceramics. Journal of the European Ceramic Society 2005;25(6):875882.Google Scholar
39 , Grémillard Epicier, L Chevalier, T Fantozzi, J Microstructural, G. study of silica-doped zirconia ceramics. Acta Mater 2000;48(18-19):46474652.Google Scholar
40 LL, Hench. Bioceramics. J Am Ceram Soc 1998;81(7):1705–28.Google Scholar
41 LL, Hench. Bioceramics: from concept to clinic. Am Ceram Soc Bull 1993;72(4):9398.Google Scholar
42 LL, Hench, Andersson, O. Bioactive glasses. In: LL, Hench, Wilson, J, editors. An introduction to bioceramics. River Edge, NJ: World Scientific; 1993. p 4162.Google Scholar
43 LL, Hench, Andersson, O. Bioactive glass coatings. In: LL, Hench, Wilson, J, editors. An introduction to bioceramics. River Edge, NJ: World Scientific; 1993. p 239259.Google Scholar
44 JA, Holloway, Denry, I. Effect of aluminum phosphate additions on the crystallization and bioactivity of fluorrichterite glass-ceramics for biomedical applications. J Am Ceram Soc 2007;90(9):29412946.Google Scholar
45 JR, Kelly, Giordano, R, Pober, R, MJ, Cima. Fracture surface analysis of dental ceramics: clinically failed restorations. Int J Prosthodont 1990;3(5):430–40.Google Scholar
46 Ebaretonbofa, E, JRG, Evans. High porosity hydroxyapatite foam scaffolds for bone substitute. Journal of Porous Materials 2002;9(4):257263.Google Scholar
47 JRJ, Mackert, FA, Rueggeberg, PE, Lockwood, AL, Evans, WO, Thompson. Isothermal anneal effect on microcrack density around leucite particles in dental porcelains. J Dent Res 1994;73:12211227.Google Scholar
48 JRJ, Mackert, AL, Williams. Microcracks in dental porcelains and their behavior during multiple firing. J Dent Res 1996;75(7):14841490.Google Scholar
49 IL, Denry, JA, Holloway, LA, Tarr. Effect of heat treatment on microcrack healing behavior of a machinable dental ceramic. J Biomed Mater Res (Appl Biomater) 1999;48:791796.Google Scholar
50 Cales, B, Stefani, Y, Lilley, E. Long-term in vivo and in vitro aging of a zirconia ceramic used in orthopaedy. J Biomed Mater Res 1994;28:619624.Google Scholar
51 IL, Denry, JA, Holloway. Microstructural and crystallographic surface changes after grinding zirconia-based dental ceramics. Journal of Biomedical Materials Research Part B-Applied Biomaterials 2006;76B(2):440448.Google Scholar
52 Kosmac, T, Oblak, C, Jevnikar, P, Funduk, N, Marion, L. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent Mater 1999;15(6):426433.Google Scholar
53 Deville, S, Chevalier, J, Grémillard, L. Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia. Biomaterials 2006;27(10):21862192.Google Scholar
54 JR, Mackert, Effect of thermally induced changes on porcelain-metal compatibility. In: Perspectives in dental ceramics, Proceedings of the Fourth International Symposium on Ceramics Preston, JD, Ed., Chicago Quintessence Publishing Co., Inc 1988:5364.Google Scholar
55 AJ, Raigrodski, GJ, Chiche, Potiket, N, JL, Hochstedler, SE, Mohamed, Billiot, S, DE, Mercante. The efficacy of posterior three-unit zirconium-oxide-based ceramic fixed partial dental prostheses: A prospective clinical pilot study. J Prosthet Dent 2006;96(4):237244.Google Scholar
56 Sailer, I, Feher, A, Filser, F, LJ, Gauckler, Luthy, H, CHF, Hammerle. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. The International Journal of Prosthodontics 2007;20(4):383–8.Google Scholar
57 Sailer, I, Feher, A, Filser, F, Luthy, H, LJ, Gauckler, Scharer, P, CHF, Hammerie. Prospective clinical study of zirconia posterior fixed partial dentures: 3-year follow-up. Quintessence International 2006;37(9):685693.Google Scholar
58 Kobayashi, K, Kuwajima, H, Masaki, T. Phase change and mechanical properties of ZrO2-Y2O3 solid electrolyte after aging. Solid State Ionics 1981;3/4:489495.Google Scholar
59 Lawson, S. Environmental degradation of zirconia ceramics. J Eur Ceram Soc 1995;15:485502.Google Scholar
60 Deville, S, Chevalier, J, Grémillard, L. Atomic force microscopy study of the tetragonal to monoclinic transformation behavior of silica doped yttria-stabilized zirconia. J Mater Sci 2005;40(14):38213823.Google Scholar