Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T17:53:24.920Z Has data issue: false hasContentIssue false

Fragmentation of α2 Plates in a Fully Lamellar TiAl During Creep

Published online by Cambridge University Press:  10 February 2011

J. G. Wang
Affiliation:
Chemistry & Materials Science, Lawrence Livermore National Laboratory, P. 0. Box 808, L-370, Livermore, CA 94551–9900, U.S.A.
L. M. Hsiung
Affiliation:
Chemistry & Materials Science, Lawrence Livermore National Laboratory, P. 0. Box 808, L-370, Livermore, CA 94551–9900, U.S.A.
T. G. Nieh
Affiliation:
Chemistry & Materials Science, Lawrence Livermore National Laboratory, P. 0. Box 808, L-370, Livermore, CA 94551–9900, U.S.A.
Get access

Abstract

The fragmentation and spheroidization of α2 laths in a fully-lamellar TiAl alloy during creep were examined. Three possible mechanisms, Rayleigh's perturbation model, subgrain boundary groove mechanism and intersection of deformation twins with α2 lamellae were presented and discussed. During creep deformation, the pile-up of interfacial dislocations leads to a change of planar interface, which, in turn, causes a difference in local chemical potential, and further results in the spheroidization of α2 lamellae. On the other hand, the deformation of the α2 phase is expected to be induced by the high local stress concentration introduced by the pile up of interfacial dislocations. The dynamic recovery process may lead to the formation of subgrain boundaries in the α2 lamellae, which results in the spheroidization and termination of α2 lamellae with the aid of diffusion during creep.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Beddoes, J., Wallace, W. and Zhao, L., Inter. Mater. Rew., 40 (1995), 197217.CrossRefGoogle Scholar
2. Wheeler, D. A., London, B. and Larsen, J. D. E., Scripta Metall. Mater., 26 (1992), 939944.CrossRefGoogle Scholar
3. Morris, M. A. and Leboeuf, M., Intermetallics, 5 (1997), 339354.CrossRefGoogle Scholar
4. Wert, J. A. and Bartholomeusz, M. F., Metall. Mater. Trans. A, 27A (1996), 127134.Google Scholar
5. Liu, C. T., Mazias, P J., Clemens, D. R., Schneibel, J. H., Sikka, V. K., Nieh, T. G., Wright, J. and Walker, L.R., International Workshop on Gamma Titanium Aluminides, eds., Kims, Y. W., The Minerals, Metals and Materials Society, Warrendale, PA, 1995, pp. 679688.Google Scholar
6. Wang, J. N., Schwartz, A. J., Nieh, T. G., Liu, C. T., Sikka, V. K. and Clemens, D. J., International Workshop on Gamma Titanium Aluminides, eds., Kims, Y. W., The Minerals, Metals and Materials Society, Warrendale, PA, 1995, pp. 945957.Google Scholar
7. Maziasz, P.J. and Liu, C. T., Metall. Mater. Trans. A, 29A (1998), 105117.CrossRefGoogle Scholar
8. Wang, J. G., Hsiung, L. M. and Nieh, T. G., Intermetallics, 1998, in-press.Google Scholar
9. Wang, J. G., Hsiung, L. M. and Nieh, T. G., Scripta Mater., 39 (1998), 957962.Google Scholar
10. Hsiung, L. M. and Nieh, T. G., Scripta Mater., 36 (1997), 323330.CrossRefGoogle Scholar
11. Cline, H. E., Acta Metall., 19 (1971), 481490.CrossRefGoogle Scholar
12. Tian, Y. L. and Kraft, R. W., Metall. Trans. A, 18A (1987), 14031414.CrossRefGoogle Scholar
13. Zhang, L. C., Chen, G. L., Wang, J. G. and Ye, H. Q., Scripta Mater., 38 (1998), 11791185.Google Scholar
14. Nakagawa, Y. G. and Weatherly, G. C., Metall. Trans., 3 (1972), 32233229.Google Scholar
15. Zhang, Y. G., Tichelaar, F. D., Schapink, F. W. and Chaturvedi, M. C., Mater. Sci. Eng. A, A219 (1996), 162179.Google Scholar