Skip to main content Accessibility help
×
Home

Formation Process of Si Nanoparticles Formed by Laser Ablation Method

  • T. Makimura (a1), T. Mizuta (a1), T. Ueda (a1) and K. Murakami (a1)

Abstract

Utilizing laser ablation of Si targets, nanoparticles can be cleanly formed in rare gas. In order to fabricate nanoparticles with well-defined structures such as those whose surfaces are chemically modified, it is important to investigate the formation process of the nanoparticles. We have developed a decomposition method for measuring time-resolved spatial distributions of nanoparticles in rare gas. Applying this method, we have investigated formation processes of silicon nanoparticles in 2-Torr argon gas. The nanoparticles are found to grow from 300 Ais to 1 ms after the ablation.

Copyright

References

Hide All
1. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).
2. Makimura, T., Kunii, Y., Ono, N. and Murakami, K., Appl. Surf. Sci. 127–129, 388 (1998).
3. Makimura, T., Kunii, Y. and Murakami, K., Jpn. J. Appl. Phys. 35 Part 1, 4780 (1996).
4. Yoshida, T., Takeyama, S., Yamada, Y. and Mutoh, K., Appl. Phys. Lett. 68, 1772 (1996).
5. Geohegan, D. B., Puretzky, A. A., Dusher, G. and Pennycook, S. J., Appl. Phys. Lett. 73, 438 (1998).
6. Geohegan, D. B., Puretzky, A. A., G. Dusher and Pennycook, S. J., Appl. Phys. Lett. 72, 2987 (1998).
7. Kanemitsu, Y., in Optical Properties of Low-Dimensional Materials, edited by Ogawa, T. and Kanemitsu, Y. (World Scientific, Singapore, 1995), Chap. 5.
8. Werwa, E., Seraphin, A. A., Chiu, L. A., Zhou, Chuxin, Kolenbrander, K.D., Appl. Phys. Lett. 64, 1821, (1994).
9. Murakami, K., Makimura, T., Ono, N., Sakuramoto, T., Miyashita, A. and Yoda, O., Appl. Surf. Sci. 127–129, 368 (1998).
10. These are most possible; We have confirmed that as-deposited nanoparticles formed in either oxygen gas or hydrogen gas diluted with argon gas exhibit photoluminescence.
11. Geohegan, D. B., in Pulsed Laser Deposition of Thin Films, edited by Chrisey, D. B. and Hubler, G. K. (Wiley-Interscience Publisher, 1994), Chap. 5.
12. Muramoto, J., Nakata, Y., Okada, T. and Maeda, M., Jpn. J. Appl. Phys. 36 Part 2, L563 (1997).
13. Muramoto, J., Nakata, Y., Okada, T. and Maeda, M., Appl. Surf. Sci. 127–129, 373 (1998).
14. Boufendi, L., Hernamm, J., Bouchoule, A. and Dubreuil, B., J. Appl. Phys. 76, 148 (1994).
15. Makimura, T. and Murakami, K., Appl. Surf. Sci. 96–98, 242 (1996).
16. Striganov, A. R. and Sventitikii, N. S.: Tables of Spectral Lines of Neutrals and Ionized Atoms (IFI-Plenum, New York, 1968).
17. Rapp, D. and Englander-Golden, P., J. Chem. Phys. 43, 1464 (1965).
18. Marine, W., d'Aniello, J. M. Scotto, Gerri, M. and Thomsen-Schmidt, P., in Lf.ser Ablation of Electronic Materials, Basic Mechanisms and Applications, edited by Fogarassy, E. and Lazare, S. (Elsevier, Amsterdam, 1992), p. 89.

Formation Process of Si Nanoparticles Formed by Laser Ablation Method

  • T. Makimura (a1), T. Mizuta (a1), T. Ueda (a1) and K. Murakami (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed