Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T23:19:22.930Z Has data issue: false hasContentIssue false

Formation of Si-On-Insulator Structure Under Solid Phase Growth

Published online by Cambridge University Press:  25 February 2011

M. Miyao
Affiliation:
Central Research Lab., Hitachi Ltd., Kokubunji, Tokyo 185, Japan
M. Moniwa
Affiliation:
Central Research Lab., Hitachi Ltd., Kokubunji, Tokyo 185, Japan
T. Warabisako
Affiliation:
Central Research Lab., Hitachi Ltd., Kokubunji, Tokyo 185, Japan
H. Sunami
Affiliation:
Central Research Lab., Hitachi Ltd., Kokubunji, Tokyo 185, Japan
T. Tokuyama
Affiliation:
Central Research Lab., Hitachi Ltd., Kokubunji, Tokyo 185, Japan
Get access

Abstract

Two possible solutions to the problem of nucleus growth encountered in lateral solid-phase epitaxial growth over insulating films are discussed. A stress field originating from the thermal expansion coefficient for Si and SiO2 acts as the driving force behind preferential nucleation. Utilization of underlying Si3N4 films successfully eliminated nucleii growth at topographically irregular portions. In addition, single crystallization of poly-Si nucleii was achieved on SOI structures for the first time. Lateral growth speed (v [cm/s]) of 1.6 × 10 exp(−3.9/kT[eV]) was obtained during high-temperature annealing (≥1000 C ).

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Laser-Solid Interactions and Transient Thermal Processing of Materials, edt: Narayan, J., Brown, W.L. and Lemons, R.A. (North-Holland, New-York, 1983)Google Scholar
(2) Chmura, Y., Matsushita, Y. and Kashiwagi, K.; Jpn. J. Appl. Phys. 21, 1152, (1982)Google Scholar
(3) Kunii, Y., Tabe, M. amd Kajiyama, K.; J. Appl. Phys. 54, 2847 (1982)Google Scholar
(4) Yamamoto, H., Ishiwara, H., Furukawa, S., Tamura, M. and Tokuyama, T.; Proc. 15th Conf. Solid State Devices and Materials p.89 (Tokyo, 1983)Google Scholar
(5) Ichikawa, M. and Hayakawa, K.; Jpn. J. Appl. Phys. 21, 145 (1982)Google Scholar
(6) Yamamoto, H., Ishiwara, H., Furukawa, S., Tamura, M. and Tokuyama, T.; 15th Symp. ”Ion Implantation in Semicond. and Sub-micron Fabrication” held at Inst. Phys. Chem. Res. (Wako-shi, Japan 1984) p.5Google Scholar
(7) Tsaur, B. Y. and Hung, L. S.; Appl. Phys. Lett. 37, 648, (1982)Google Scholar
(8) Natsuaki, N., Tamura, M., Miyazaki, T. and Yanagi, Y.; Proc. 15th Conf. Solid State Devices and Materials p.89 (Tokyo, 1983) p.47Google Scholar
(9) Csepregi, L., Kennedy, E.F., Gallagher, T.J., Mayer, J.W. and Sigmon, T.W.; J. Appl. Phys. 48, 4234, (1977)Google Scholar
(10) Barger, R.M. and Donovan, R.P.; Fundamantals of Silicon Integrated Device Technology (Prentice-Hall, Englewood Cliffs, 1976), vol.1, p.205 Google Scholar
(11) Blech, J.A. and Meieran, E.S.; J. Appl. Phys. 38, 2913 (1967)Google Scholar
(12) Moniwa, M., Tsuchiyama, R., Miyao, M., Sunami, H. and Tokuyama, T.; to be published Appl. Phys. Lett. Google Scholar