Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-28T21:52:10.167Z Has data issue: false hasContentIssue false

The Formation of Ordered Nanoporous Structure with Controlled Micelle Size

Published online by Cambridge University Press:  01 February 2011

Jeongho Chang
Affiliation:
Materials Chemistry Research, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Yongsoon Shin
Affiliation:
Materials Chemistry Research, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Li-Qiong Wang
Affiliation:
Materials Chemistry Research, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Gregory J. Exarhos
Affiliation:
Materials Chemistry Research, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Get access

Abstract

Selected MPEG-b-PDLLA block copolymers have been synthesized with systematic variation of the chain lengths of the resident hydrophilic and hydrophobic blocks. The size and shape of the micelles that spontaneously form in solution are then controlled by the characteristics of the copolymer template. Formation of nanoporous silica at room temperature with short-preparation time is demonstrated and silica-containing materials evolve with uniform pore shape and wall structure. The formation mechanism of these nanoporous structures obtained by controlling the micelle size has been confirmed using both liquid and solid state 13C and 29Si NMR techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Göltner, C. G., and Antonietti, M., Adv. Mater. 9, 431 (1997).10.1002/adma.19970090516Google Scholar
2. Huo, Q., Margolese, D. I., and Stucky, G. D., Chem. Mater. 8, 1147 (1996).10.1021/cm960137hGoogle Scholar
3. Mercier, L. and Pinnavia, T. J., Chem. Mater. 12, 188 (2000).10.1021/cm990532iGoogle Scholar
4. Zhao, D., Huo, Q., Feng, J., Chmelka, B. F., and Stucky, G. D., J. Am. Chem. Soc. 120, 6024 (1998).10.1021/ja974025iGoogle Scholar
5. Monnier, A., Schuth, F., Huo, Q., Kumar, D., Margolese, D., Maxwell, R. S., Stucky, G. D., Krishnamurty, M., Petroff, P., Firouzi, A., Janicke, M., and Chmelka, B. F., Science 261, 1299 (1993).10.1126/science.261.5126.1299Google Scholar
6. Steel, A., Carr, S. W., and Anderson, M. W., J. Chem. Soc., Chem. Commun. 157 (1994).Google Scholar
7. Chen, C. Y., Burkett, S. L., Li, H. X., and Davis, M. E., Microporous Mater. 2, 27 (1993).10.1016/0927-6513(93)80059-4Google Scholar
8. Reley, T., Stolinik, S., Heald, C. R., Xiong, C. D., Garnett, M. C., Illum, L., Davis, S. S., Purkiss, S. C., Barlow, R. J., and Gellert, P. R., Langmuir 17, 3168 (2001).10.1021/la001226iGoogle Scholar