Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-23T02:14:20.239Z Has data issue: false hasContentIssue false

Formation of Ohmic Contacts to InP by Means of Rapid Thermal Low Pressure (Metalorganic) Chemical Vapor Deposition (RT-LPMOCVD) Technique

Published online by Cambridge University Press:  26 February 2011

A. Katz
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA
A. Feingold
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA
S. Nakahara
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA
E. Lane
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA
M. Geva
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA
Get access

Abstract

The viability of forming an ohmic contact to InGaAs/InP structures by means of a load-locked RT-LP(MO)CVD integrated process, was demonstrated. The wafer was loaded into the reactor chamber and was exposed to a sequence of dry and in-situ processes which led to the formation of an ohmic contact. After an in-situ cleaning of the wafer through a thermal cycle at 500°C under a flow of tertiarybutylphosphine (TBP), which provided the needed free hydrogen for a mild etching of the surface, however with an over pressure of P to eliminate surface degradation, a layer of silicon oxide (SiOx ) was rapid thermal chemical vapor deposited (RT-CVD) onto the InGaAs/InP sample via a rapid thermal cycle (500°C,30 s) in a low pressure O2 and 2% diluted SiH4. Dry etching of 50–150 μm wide contact stripes was carried out using a contact stencil mask by an electron-cyclotron resonance (ECR) dry etching. Subsequently the wafer was reloaded through the load-lock to the main chamber and a TiNx layer were selectively deposited into the via-holes and processed to provide an ohmic contact to the InGaAs/InP substrate. Finally, a blanket deposition of conducting cap layer was realized by means of RT-LP(MO)CVD. This work provides a solid demonstration to the feasibility of the single-wafer-integrated-process (SWIP) as an approach to replace the batch process traditionally used for manufacturing the InP-based optoelectronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nissim, Y. I., Moison, J. M., Hovzay, F., Lebland, F., Licoppe, C., and Bensoussan, M., Appl. Surf. Sci. 55, 1 (1990).Google Scholar
2. Nissim, Y. I., Licoppe, C., Moison, J. M., Regolini, J. L., Bensahel, D., and Avvert, G., SPIE J. 1033, 273 (1988).Google Scholar
3. Katz, A., Feingold, A., Pearton, S. J., and Chakrabarti, U. K., Appl. Phys. Lett. 59, 579 (1991).CrossRefGoogle Scholar
4. Katz, A., Feingold, A., Chakrabarti, U. K., Pearton, S. J., and Jones, K. S., Appl. Phys. Lett. 59, 1 (1991).Google Scholar
5. Katz, A., Feingold, A., Pearton, S. J., Nakahara, S., Ellington, M., Chakrabarti, U. K., Geva, M., and Lane, E., J. Appl. Phys. 70, 3666 (1991).CrossRefGoogle Scholar
6. Katz, A., Feingold, A., Nakahara, S., Lane, E., Geva, M., Pearton, S. J., Steive, F. A., and Jones, K. S., J. Appl. Phys., 71, (to be published 15 Jan 1992).Google Scholar
7. Katz, A., J. Elect. Mater. 20, 1069 (1991).Google Scholar
8. Katz, A., Feingold, A., Nakahara, S., Pearton, S. J., Geva, M., Lane, E., and Jones, K. S., J. Appl. Phys. 69, 7664 (1991).Google Scholar
9. Fix, R. M., Gordon, R. G., and Hoffman, D. M., Chem. Mater. 2, 235 (1990).CrossRefGoogle Scholar
10. Seyferth, D. and Mignani, G., J. Mater. Sci. Lett. 7, 487 (1988).Google Scholar
11. Constantine, C., Johnson, D., Pearton, S. J., Chakrabarti, U. K., Amerson, A. B., Hobson, W. S., and Kinsella, A. P., J. Vac. Sci. Technol. B8, 596 (1990).CrossRefGoogle Scholar
12. Katz, A. and Dautremont-Smith, W. C., J. Appl. Phys. 67, 6237 (1990).CrossRefGoogle Scholar
13. Nissim, Y. I., Licoppe, C., Moison, J. M., Regolini, J. L., Bensahel, D., and Avvert, G., SPIE J., 1033, 273 (1988).Google Scholar
14. Baliga, B. J. and Ghandi, S. K., J. Appl. Phys. 44, 990 (1973).CrossRefGoogle Scholar
15. Becker, F. S., Pancik, D., Anzinzer, H., and Spitzer, A., J. Vac. Sci. Technol. B5, 1555 (1987).CrossRefGoogle Scholar
16. Fix, R. M., Gordon, R. G., and Hoffman, D. M., in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by Besman, T. M., and Galloir, B. M. (MRS, Pittsburgh, PA 1990), p. 357.Google Scholar
17. Ishihara, K., Yamazaki, K., Hamada, H., Kamisako, K., and Tarui, T., Jpn. J. Appl. Phys. 29, 2103 (1990).Google Scholar
18. Feingold, A., Katz, A., Nakahara, S., Pearton, S. J., Lane, E., J. Appl. Phys. (to be published).Google Scholar