Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T00:49:51.963Z Has data issue: false hasContentIssue false

Formation of Metallic Systems Far From Equilibrium By Pulsed Laser Deposition

Published online by Cambridge University Press:  10 February 2011

Hans-Ulrich Krebs
Affiliation:
Institut für Metallphysik, University of Göttingen, Hospitalstrasse 3-7, 37073 Göttingen and Sonderforschungsbereich 345, Germany, krebs@umpsunl.gwdg.de
Marco Hamp
Affiliation:
Institut für Metallphysik, University of Göttingen, Hospitalstrasse 3-7, 37073 Göttingen and Sonderforschungsbereich 345, Germany, krebs@umpsunl.gwdg.de
Sebastian Fähler
Affiliation:
Institut für Metallphysik, University of Göttingen, Hospitalstrasse 3-7, 37073 Göttingen and Sonderforschungsbereich 345, Germany, krebs@umpsunl.gwdg.de
Michael Störmer
Affiliation:
Institut für Metallphysik, University of Göttingen, Hospitalstrasse 3-7, 37073 Göttingen and Sonderforschungsbereich 345, Germany, krebs@umpsunl.gwdg.de
Kai Sturm
Affiliation:
Institut für Metallphysik, University of Göttingen, Hospitalstrasse 3-7, 37073 Göttingen and Sonderforschungsbereich 345, Germany, krebs@umpsunl.gwdg.de
Martin Weisheit
Affiliation:
Institut für Metallphysik, University of Göttingen, Hospitalstrasse 3-7, 37073 Göttingen and Sonderforschungsbereich 345, Germany, krebs@umpsunl.gwdg.de
Get access

Abstract

The properties of metallic thin films prepared by pulsed laser deposition (PLD) strongly differ from samples grown by conventional thin film techniques like sputtering and evaporation. In many systems (Fe-Nb, Fe-Zr, Cu-Co, Fe-Ag and Ni-Ag), strongly supersaturated solid solutions are formed, a broader formation range occurring for amorphous samples, and nanocrystalline phases are produced. Additionally, metastable phases of larger thickness at the interfaces of multilayers occur. Reasons for these behaviors are discussed with respect to atomic mixing and implantation effects induced by the high instantaneous deposition rate during PLD and the high kinetic energy (>100 eV) of the deposited ions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for instance, Proc. 6th Intl. Conf. Rapidly Quenched Metals, edts. Cochrane, R.W. and Ström-Olsen, J.O., Mat.Sci. Eng. 98 (1988).Google Scholar
2. Krebs, H.U. and Bremert, O., Appl. Phys. Lett. 62, 2341 (1993).Google Scholar
3. Störmer, M. and Krebs, H. U., J. Appl. Phys. 78, 7080 (1995).Google Scholar
4. Krebs, H. U., Intern. J. Non-Equilibrium Processing 10, 1 (1997).Google Scholar
5. Bremert, O., PhD thesis, Göttingen 1993.Google Scholar
6. Krebs, H.U., J. Less-Common Met. 145, 97 (1988).Google Scholar
7. Krebs, H.U., Störmer, M., Fähler, S., Bremert, O., Hamp, M., Pundt, A., Teichler, H., Blum, W., and Metzger, T.H., Appl. Surf. Sci. 109/110, 563 (1997).Google Scholar
8. Michaelsen, C., Phil. Mag. A 72, 813 (1995).Google Scholar
9. Gente, C., Oehring, M. and Bormann, R., Phys. Rev. B 48, 13244 (1993).Google Scholar
10. Weigang, G., Hecht, H. and von Minnigerode, G., Z. Phys. B 96, 349 (1995).Google Scholar
11. van Ingen, R. P., Fastenau, R.H.J. and Mittemeijer, E.J., Phys. Rev. Lett. 72, 1871 (1994).Google Scholar
12. Krebs, H. U. and Störmer, M., Phys. Rev. Lett. 75, 3966 (1995).Google Scholar
13. Clemens, B., J. Less-Common Metals 140, 57 (1988).Google Scholar
14. Luo, Y. and Krebs, H. U., J. Appl. Phys. 77, 1482 (1995).Google Scholar
15. Fähler, S., Weisheit, M. and Krebs, H.U., unpublished.Google Scholar
16. Meyer, K., Schuller, I.K. and Falco, C.M., J. Appl. Phys. 52, 1177 (1981).Google Scholar
17. Fähler, S. and Krebs, H.U., Appl. Surf. Sci. 96–98, 61 (1996).Google Scholar
18. Dyer, P.E., Appl. Phys. Lett. 55, 1630 (1989).Google Scholar
19. Lunney, J.G., Appl. Surf. Sci. 86, 79 (1995).Google Scholar