Skip to main content Accessibility help
×
Home

Formation Of Hydrogen Molecules In Crystalline Silicon Treated With Atomic Hydrogen

  • K. Murakami (a1), N. Fukata (a1), S. Sasaki (a1), K. Ishioka (a2), K. G. Nakamura (a2), M. Kitajima (a2), S. Fujimura (a3), J. Kikuchi (a3) and H. Haneda (a4)...

Abstract

Hydrogen molecules have been formed in crystalline silicon at various temperatures by a hydrogen-atom remote treatment. The Raman spectrum of the vibrational lines of hydrogen molecules in crystalline silicon is detected for silicon samples treated at temperatures between 250 and 500° C. The maximum production is obtained at 400° C. The Raman spectrum of hydrogen molecules in silicon observed at room temperature exhibits a frequency shift of around 4158 cm−1 and a very broad half-width of approximately 34 cm−1. Isotope shift also can be observed at around 2990 cm−1 in silicon treated with deuterium atoms at 400° C. The frequency shifts of the observed lines are in close agreement with those reported for molecular hydrogen and deuterium in gas, liquid, and solid phases. We discuss a model for the hydrogen molecule configuration and rule out the possibility of high-pressure hydrogen molecular gas in microvoids in crystalline silicon. These results indicate that hydrogen molecules exist at the tetrahedral interstitial sites in crystalline silicon.

Copyright

References

Hide All
[1] See for example, Zheng, J.F. and Stavola, M., Phys. Rev. Letters 76, 1154 (1996).
[21] Chang, K.J. and Chadi, D.J., Phys. Rev. Lett. 60, 1422 (1988).
[3] Walle, C.G. Van de, Phys. Rev. B 49, 4579 (1994).
[4] Murakami, K.,Fukata, N., Sasaki, S., Ishioka, K., Kitajima, M., Fujimura, S., Kikuchi, J., and Haneda, H., Phys. Rev. Letters 77, 3161 (1996).
[5] Fukata, N., Sasaki, S., Murakami, K., Ishioka, K., Kitajima, M., Fujimura, S., and Kikuchi, J., Jpn. J. Appl. Phys. 35, L1069 (1996).
[6] Chadi, D.J. and Park, C.H., Phys. Rev. 52, 8877 (1995), and J.D. Holbeck, B.B. Nielsen, R. Jones, P. Sitch, and S. Orberg, Phys. Rev. Lett. 71, 875 (1993).
[7] Stoicheff, B.P., Can. J. Phys. 35, 730 (1957).
[8] Bhatnagar, S.S., Allin, E.J., and Welsh, H.L., Can. J. Phys. 40, 9 (1962).
[9] Fukata, N., Sasaki, S., Fujimura, S., Haneda, H., and Murakami, K., Jpn. J. Appl. Phys. 35, 3937 (1996).
[10] Stutzmann, M., Beyer, W., Tapfer, L. and Herrero, C.P., Physica B 170, 240 (1991).
[11] Heyman, J.H., Ager, J.W. III, Haller, E.E., Johnson, N.M., Walker, J., and Doland, C.M., Phys. Rev. B 45, 13363 (1992).
[12] Fukata, N., Sasaki, S., Murakami, K., Ishioka, K., Kitajima, M., Fujimura, S., Kikuchi, J., and Haneda, H., to be submitted to Phys. Rev. B.
[13] Hartwig, C.M. and Vitko, J. Jr., Phys. Rev. B 18, 3006 (1978).
[14] Nakamura, K.G., Ishioka, K., Kitajima, M., and Murakami, K.; Solid State Comm. (in press).

Related content

Powered by UNSILO

Formation Of Hydrogen Molecules In Crystalline Silicon Treated With Atomic Hydrogen

  • K. Murakami (a1), N. Fukata (a1), S. Sasaki (a1), K. Ishioka (a2), K. G. Nakamura (a2), M. Kitajima (a2), S. Fujimura (a3), J. Kikuchi (a3) and H. Haneda (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.