Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-23T14:44:04.719Z Has data issue: false hasContentIssue false

Formation of Buried Epitaxial Si-Ge Alloy Layers in Si <100> Crystal by High Dose Ge ION Implantation

Published online by Cambridge University Press:  28 February 2011

Kin Man Yu
Affiliation:
Center for Advanced Materials, Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Ian G. Brown
Affiliation:
Accelerator & Fusion, Research Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Seongil Im
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720.
Get access

Abstract

We have synthesized single crystal Si1−xGex alloy layers in Si <100> crystals by high dose Ge ion implantation and solid phase epitaxy. The implantation was performed using the metal vapor vacuum arc (Mevva) ion source. Ge ions at mean energies of 70 and 100 keV and with doses ranging from 1×1016 to to 7×1016 ions/cm2 were implanted into Si <100> crystals at room temperature, resulting in the formation of Si1−xGex alloy layers with peak Ge concentrations of 4 to 13 atomic %. Epitaxial regrowth of the amorphous layers was initiated by thermal annealing at temperatures higher than 500°C. The solid phase epitaxy process, the crystal quality, microstructures, interface morphology and defect structures were characterized by ion channeling and transmission electron microscopy. Compositionally graded single crystal Si1−xGex layers with full width at half maximum ∼100nm were formed under a ∼30nm Si layer after annealing at 600°C for 15 min. A high density of defects was found in the layers as well as in the substrate Si just below the original amorphous/crystalline interface. The concentration of these defects was significantly reduced after annealing at 900°C. The kinetics of the regrowth process, the crystalline quality of the alloy layers, the annealing characteristics of the defects, and the strains due to the lattice mismatch between the alloy and the substrate are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abstreiter, G., Brugger, H., Wolff, T., Jorke, H., and Herzog, H. J., Phys. Rev. Lett. 54, 2441 (1985).CrossRefGoogle Scholar
2. Iyer, S. S., Patton, G. L., Delage, S. L., Tiwari, S., and Stork, J. M. C., Proc. Symp. on Silicon Molecular Beam Epitaxy, Hawaii, 1987, eds. Bean, J. C. and Schowalter, L. J. (The Electrochemical Soc. Inc.) p. 114.Google Scholar
3. Bean, J. C., Sheng, T. T., Feldman, L. C., Fiory, A. T., and Lynch, R. T., Appl. Phys. Lett. 44, 102 (1984).CrossRefGoogle Scholar
4. King, C. A., Hoyt, J. L., Grant, C. M., Gibbons, J. F., Scott, M. P., and Turner, T., IEEE Electron. Dev. Lett. EDL- 10, 52 (1989).Google Scholar
5. Meyer, F., Zafrany, M., Eisenberg, M., Beserman, R., Schwebel, C., and Pellet, C., J. Appl. Phys. 70, 4268, (1991).CrossRefGoogle Scholar
6. Methews, J. W., Epitaxial Growth, ed., Methews, J. W. (Academic Press, 1974) p. 559.Google Scholar
7. Hull, R. and Bean, J. C., Mat. Res. Soc. Symp. Proc. 148, 309 (1989).Google Scholar
8. Howard, D. J., Paine, D. C., and Stoffel, N. G., Mat. Res. Soc. Symp. Proc. 187, 279 (1991).Google Scholar
9. Paine, D. C., Howard, D. J., Stoffel, N. G., Horton, J. A., J. Mater. Res. 5, 1023 (1990).Google Scholar
10. Berti, M., Mazzi, G., Calcagnile, L., Drigo, A. V., Merli, P. G., and Migliori, A., J. Mater. Res. 6, 2120 (1991).Google Scholar
11. Paine, D. C., Howard, D. J., and Stoffel, N. G. J. Electron. Mater. 20, 735 (1991).Google Scholar
12. White, A., Short, K. T., Dynes, R. C., Garno, J. P., and Gibson, J. M., Appl. Phys. Lett. 50 95 (1987).Google Scholar
13. White, A., Short, K. T., Dynes, R. C., Hull, R., and Vandenberg, S. M., Nucl. Instrum. Meth. B39, 253 (1989).CrossRefGoogle Scholar
14. Mantl, S., Jebasinski, R., and Hartman, D., Nucl. Instrum. Meth. 59/60, 666 (1991).Google Scholar
15. Wu, M. F., Vantomme, A., Langouche, G., Vanderstraeten, H., and Bruynseraede, Y., Nucl. Instrum. Meth. B54, 444 (1991).Google Scholar
16. Spraags, R. S., Reeson, K. J., Gwilliam, R. M., Sealy, B. J., DeVeirman, A., and vanLanduyt, J., Nucl. Instrum. Meth. B55, 836 (1991).CrossRefGoogle Scholar
17. Lindner, J. K. N. and teKaat, E. H., J. Mater. Res. 3, 1238 (1988).CrossRefGoogle Scholar
18. Lindner, J. K. N., Klassen, T., and teKaat, E. H., Nucl. Instrum. Meth. B59/60, 655 (1991).CrossRefGoogle Scholar
19. Yu, K. M., Katz, B., and Brown, I. G., Nucl. Instrum. Meth. B58, 27 (1991).CrossRefGoogle Scholar
20. Namavar, F., Sanchez, F. H., I/Budnick, J., Fasihudin, A. H., and Hayden, H. C., Mat. Res. Soc. Spring Meeting, 1987, Symp. C, Anaheim, CA. Google Scholar
21. Alford, T. L. and Barbour, J. C., Mat. Res. Soc. Symp. Proc. 157, 137 (1990).Google Scholar
22. Brown, I. G., Dickinson, M. R., Galvin, J. E., Godechot, X., and MacGill, R. A., Nucl. Instrum. Meth. B55, 506 (1991).Google Scholar
23. Brown, I. G., Feinberg, B., and Galvin, J. E., J. Appl. Phys. 63, 4889 (1988).Google Scholar
24. Olson, G. L. and Roth, J. A., Mater. Sci. Reports 3, 1 (1988).Google Scholar
25. Paine, D. C., Evans, N. D., and Stoffel, N. G., J. Appl. Phys. 70, 4278 (1991).Google Scholar
26. Maher, D. M., Knoell, R. V., Ellington, M. B., and Jacobson, D. C., Mat. Res. Soc. Symp. Proc. 52, 93 (1986).CrossRefGoogle Scholar
27. Flagmeyer, R. and Höricke, M., Nucl. Instrum. Meth. B30, 219 (1988).Google Scholar
28. Man Yu, Kin and Chan, K. T., Appl. Phys. Lett. 56, 45 (1990).Google Scholar
29. Robinson, B. J., Chilton, B. T., Ferret, P., and Thompson, D. A., Mat. Res. Soc. Symp. Proc. 160, 353 (1989).Google Scholar
30. Holländer, B., Mantl, S., Stritzker, B., Jorke, H., and Kasper, E., J. Mater. Res. 4, 163 (1989).CrossRefGoogle Scholar
31. Thornton, J., Hemment, P. L. E., and Wilson, I. H., Nucl. Instrum. Meth. B19/20, 307 (1987).Google Scholar
32. Thornton, J., Paus, K. C., Webb, R. P., Wilson, I. H., and Booker, G. R., J. Phys. D: Appl. Phys. 21, 334 (1988).Google Scholar