Skip to main content Accessibility help

Formation of AlxOyNz Barriers for Advanced Silver Metallization

  • Y. Wang (a1) and T.L. Alford (a1)


Silver has been explored as a potential candidate for future advanced interconnects due to its lowest electrical resistivity, when compared with Al and Cu. As in the case of Cu metallization, an additional layer between the Ag film and underneath dielectric is necessary in order to improve adhesion and to block the diffusion of Ag atoms. In this study, thin aluminum oxynitride (AlxOyNz) diffusion barriers have been formed in the temperature range of 400-725 °C by annealing Ag/Al bilayers on oxidized Si substrates in ammonia ambient. Rutherford backscattering spectrometry showed that the out-diffused Al reacted with both the ammonia and oxygen in the ambient and encapsulated the Ag films. Higher process temperatures and thinner original Al layers showed to improve the resistivity of the encapsulated Ag layers. The resulting Ag resistivity values are ∼1.75 ± 0.35 µΩ-cm. The thermal stability test of these diffusion barriers showed that these barriers sustained the interdiffusion between Cu and Ag up to 620 °C at least for 30 min in either vacuum or flowing He-0.5% H2. This temperature is a 200°C improvement over previously reported values for the self-encapsulated Cu and Ag films. X-ray diffraction spectra showed no formation of any high resistive intermetallic compounds, i.e., Ag3Al, Ag2Al, and AlAg3.



Hide All
1. Alford, T. L., Li, J., Mayer, J.W., and Wang, S.-Q., Thin Solid Films 262, (1995)10.1016/0040-6090(95)06624-1
2. Alford, T. L., Adams, D., Laursen, T., and Manfred, B. Ullrich, Appl. Phys. Lett. 68, 23 (1996).
3. CRC Handbook of Electrical Resistivities of Binary Metallic Alloys, edited by Shröder, Klaus (CRC, Boca Raton, FL, 1983), p.44.
4. Gutmann, R. J., Kaloueros, A. E., and Lanford, W. A., Thin Solid Films 236, 257 (1993).
5. Lanford, W. A., Ding, P. J., Wang, W., Hymes, S., and Murarka, S. P., Thin Solid Films 262, 234 (1995).10.1016/0040-6090(95)05837-0
6. Wang, W., Lanford, W. L., and Murarka, S. P., Appl. Phys. Lett. 68, 12 (1996).
7. Ding, P. J., Wang, W., Lanford, W. A., Hymes, S., and Murarka, S. P., Appl. Phys. Lett. 65, 14 (1994).
8. Ding, P. J., Wang, W., Lanford, W. A., Hymes, S., and Murarka, S. P., J. Appl. Phys. 75, 7 (1994).
9. Shalish, I., Gasser, S. M., Kolawa, E., Nicolet, M.-A., and Ruiz, R. P., Thin Solid Films 289, 166 (1996).10.1016/S0040-6090(96)08919-5
10. Zetterling, C.-M., Östling, M., Wongchotigul, K., Spencer, M. G., Tang, X., Harris, C. I., Nordell, N., and Wong, S. S., J. Appl. Phys. 82, 2990 (1997).10.1063/1.366136
11. Schroder, D. K., Semiconductor Material and Device Characterization, (Wiley, New York, 1990), P9.
12. Doolittle, L. R., Nucl. Inst. Meth. Res. B9, 344 (1985).10.1016/0168-583X(85)90762-1
13. Lange's Handbook of Chemistry, No. 14, 11th ed, edited by Dean, J. A. (McGraw-Hill, New York, 1992) P669.
14. Adams, D., Ph. D. Dissertation, Arizona State University, 1996
15. Landolt Börnstein New Serie IV/5a, (Springer-Verlag, Berlin, New York, 1961) p5.
16. Tu, K.-N., Mayer, James W., and Feldman, L. C., Electronic Thin Film Science for Electrical Engineers and Materials Scientists, (Macmillan Publishing Company, New York, 1992).
17. Russell, S. W., Alford, T. L., and Mayer, J. W., J. Electrochem. Soc. 142, 1308 (1995).10.1149/1.2044169

Related content

Powered by UNSILO

Formation of AlxOyNz Barriers for Advanced Silver Metallization

  • Y. Wang (a1) and T.L. Alford (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.