Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-27T11:50:22.207Z Has data issue: false hasContentIssue false

Formation of Alkali Metal Layers at the Surface of Electron-Irradiated Alkali Halides

Published online by Cambridge University Press:  15 February 2011

E. Paparazzo
Affiliation:
Istituto di Struttura della Materia, Via E. Fermi 38 00044 Frascati, Italy, paparazzo@vaxism.ism.fra.cnr.it
N. Zema
Affiliation:
Istituto di Struttura della Materia, Via E. Fermi 38 00044 Frascati, Italy, paparazzo@vaxism.ism.fra.cnr.it
L. Moretto
Affiliation:
Istituto di Struttura della Materia, Via E. Fermi 38 00044 Frascati, Italy, paparazzo@vaxism.ism.fra.cnr.it
Get access

Abstract

Scanning Auger microscopy (SAM) and reflected electron energy loss microscopy (REELM) have been used to study the chemical modifications induced by 10-keV electron bombardment at the surface of the alkali halides: LiF, NaF, NaCl and KI. Auger spectra show that the alkali-to-halogen surface ratio increases with irradiation time, although they provide no conclusive evidence as to the chemical nature of the damage layer. Conversely, REELM analysis clearly reveals the formation of alkali metal through the occurrence of characteristic bulk plasmon peaks and surface plasmon peaks, which can also be used to image the lateral distribution of the damage layer to nearly submicron spatial resolution. Some unexpected signals are observed, deriving from combination of surface plasmon excitations with bulk plasmon excitations, and tentatively interpreted as arising from the inhomogeneous morphology of the alkali metal layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Desorption Induced by Electronic Transitions-DIET VI, edited by M., Szymonski and Z., Postawa, North-Holland, Amsterdam, 1995.Google Scholar
2. Tokutaka, H., Prutton, M., Higginbotham, I.G. and Gallon, T.E., Surf. Sci. 21 p. 233 (1970).Google Scholar
3. Cota-Araiza, L.S. and Powell, B.D., Surf. Sci. 51, p. 504 (1975).Google Scholar
4. Dou, Q., Lynch, D.W. and Bevolo, A.J., Surf. Sci. 219, L623 (1989).Google Scholar
5. Paparazzo, E. J. Vac. Sci. Technol. A 14, p. 1376 (1996).Google Scholar
6. Paparazzo, E., Appl. Surf. Sci. 72, p. 313 (1993); E. Paparazzo, L. Moretto, C. D'Amato and A. Palmieri, Surf. Interface Anal. 23, p. 69 (1995).Google Scholar
7. Wagner, C.D., Discuss. Faraday Soc. 60, p. 291 (1975).Google Scholar
8. Barrie, A. and Street, F.J., J. Electron Spectrosc. Relat. Phenom. 7, p. 1 (1975).Google Scholar
9. Kunz, C.. Z. Phys. 196, p. 311 (1966).Google Scholar
10. Loos, T.K., Z. Phys. 265, p. 225 (1973).Google Scholar
11. Tanuma, S., Powell, C. J. and Penn, D. R., J. Vac. Sci. Technol. A8, p. 2213 (1990).Google Scholar
12. Bevolo, A.J., Scanning Electron Microsc. Part IV, p. 1449 (1985).Google Scholar
13. Raether, H., Excitation of Plasmons and Interband Transitions by Electrons, Springer-Verlag, Berlin, 1980, p. 27.Google Scholar