Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T04:08:44.990Z Has data issue: false hasContentIssue false

Formation Energies of Point Defects in Copper Indium Diselenide Using ab initio Methods

Published online by Cambridge University Press:  01 February 2011

C. Domain
Affiliation:
EDF-R&D, Département MMC, Les Renardières, 77250 Moret sur Loing, France
J.M. Raulot
Affiliation:
EDF-R&D, Département MMC, Les Renardières, 77250 Moret sur Loing, France
S. Laribi
Affiliation:
EDF-R&D, Département MMC, Les Renardières, 77250 Moret sur Loing, France
S. Taunier
Affiliation:
EDF-R&D, CISEL project, Quai Walter, 78401 Chatou Cedex, France
J.F. Guillemoles
Affiliation:
ENSCP, LECA, UMR 7575, 11 rue Pierre et Marie Curie, 75005 Paris, France
Get access

Abstract

The opto-electronic properties of CuInSe2 and related compounds depend on their defect chemistry in a way that is far from being understood and in which ab initio calculations could help by providing new insights as shown previously. Ab initio calculations of energy and electronic structure of various intrinsic (including defect pairs) and extrinsic (including potential dopants such as Zn) point defects have been performed in the chalcopyrite semiconductors CuInSe2, some of them being computed for the first time by advanced ab initio techniques. The method used is based on the density functional theory within the framework of pseudo-potentials and plane waves basis set. The results are discussed in view of the existing data, models and calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Contreras, M. A., Egaas, B., Ramanathan, K., Hiltner, J., Swartzlander, A., Hasoon, F., and Noufi, R., Progress in Photovoltaics 7, 311 (1999).Google Scholar
2 Canava, B., Guillemoles, J.F., Yousfi, E.B., Cowache, P., Kerber, H., Loeffl, A., Schock, H. W., Powalla, M., Hariskos, D., and Lincot, D., Thin Sol. Films 361-362, 187192 (2000).Google Scholar
3 Zhang, S.B., Wei, S.H., and Zunger, A., Phys. Rev. Lett. 78, 4059 (1997).Google Scholar
4 Zhang, S.B., Wei, S.H., Zunger, A., and Katayama-Yoshida, H., Phys. Rev. B 57, 9642 (1998).Google Scholar
5 Jaffe, J.E. and Zunger, A., Phys. Rev. B 29, 1882 (1984).Google Scholar
6 Kresseand, G. Hafner, J., Phys. Rev. B 47, 558 (1993); ibid. 49, 14251 (1994); Kresse, G. and J. Furthmüller, Comput. Mat. Sci. 6, 15 (1996); G. Kresse and J. Furthmüller, Phys. Rev. B 55, 11169 (1996).Google Scholar
7 Perdew, J.P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
8 Perdew, J.P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).Google Scholar
9 Manka, P. and Garbato, L., Solar cells 16, 101 (1986).Google Scholar
10 Dronskowski, R. and Blöchl, P.E., J. Phys. Chem. 97, 8617 (1993).Google Scholar
11 Tank, R.W., Jepsen, O., Burkhardt, A., and Andersen, O.K., The Stuttgart TB-LMTO-ASA program (version 47), MPI für Ferstkörperforschung, Stuttgart, Germany, 1998.Google Scholar
12 Kroger, F.A., “The chemistry of imperfect crystalsNorth Holland pub. 1964, Amsterdam.Google Scholar
13 Knight, K.S., Material Research Bulletin, 27, 161 (1992).Google Scholar
14 Domain, C., Laribi, S., Taunier, S., and Guillemoles, J.F., to be published in J. of Phys. and Chem. of Solids.Google Scholar
15 Guillemoles, J.F., Thin Solid Films 361-262, 338 (2000).Google Scholar
16 Guillemoles, J.F., Kronik, L., Cahen, D., Rau, U., Jasenek, A., and Schock, H.W., J. Phys. Chem. B 104, 4849 (2000).Google Scholar
17 Zuo, J.M., O'Keeffe, M., and Spence, J.C.H., Nature 401, 49 (1999).Google Scholar
18 Canava, B., PhD Thesis, University P.&M. Curie, Paris, 2000.Google Scholar
19 Raulot, J.M., Domain, C., and Guillemoles, J.F., to be submitted.Google Scholar