Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-26T08:26:12.665Z Has data issue: false hasContentIssue false

Formation and Stability of NI(PT) Silicide on (100)SI and (111)SI

Published online by Cambridge University Press:  10 February 2011

D. Mangelinck
Affiliation:
Institute of Materials Research and Engineering, Blk S7, level 3, National University of Singapore, Singapore 119260, d-mangelin@imre. Org. sg
J. Y. Dai
Affiliation:
Institute of Materials Research and Engineering, Blk S7, level 3, National University of Singapore, Singapore 119260, d-mangelin@imre. Org. sg
S. K. Lahiri
Affiliation:
Institute of Materials Research and Engineering, Blk S7, level 3, National University of Singapore, Singapore 119260, d-mangelin@imre. Org. sg
C. S. Ho
Affiliation:
Department of Electrical Engineering, National University of Singapore, Singapore 119260
T. Osipowicz
Affiliation:
Department of Physics, National University of Singapore, Singapore 119260
Get access

Abstract

The effect of a small amount of Pt (5 at.%) on the thermal stability of NiSi film on (100)Si and (111 )Si has been investigated. Rutherford back scattering, Scanning Electron Microscopy, and X-ray diffraction have been used to study the formation, microstructure and orientation of the silicide. The addition of platinum results in increasing the disilicide nucleation temperature to 900°C and thus leads to a better stability of NiSi at high IC processing temperatures. The presence of Pt also induced a texture of the NiSi film both on (11 1)Si and (100)Si. The increase in thermal stability is explained in terms of nucleation controlled reaction concept and should open new possibilities for the use of NiSi in self aligned silicidation. The redistribution of Pt in the silicide is examined and explained in terms of kinetics and thermodynamics considerations. The addition of Pt also increases the temperature of agglomeration of NiSi.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Jeon, H., Sukov, C. A., Honeycutt, J. W., Rozgonyi, G. A., and Nemanich, R. J.,, J. Appl. Phys. 71, 4296 (1992).10.1063/1.350808Google Scholar
2 Ohguro, T., Nakajima, S., Koike, M., Morimoto, T., Nishiyama, A., Ushiku, Y., Yoshitomi, T., Ono, M., Saito, M., and Iwai, H., IEEE Trans. Electron Devices, 41, 2305 (1994)10.1109/16.337443Google Scholar
3 d'Heurle, F. M., J. Mater. Res. 3, 167 (1988).Google Scholar
4 Mangelinck, D., Gas, P., Gay, J. M., Pichaud, B., and Thomas, O., J. Appl. Phys. 84, 2583 (1998).10.1063/1.368611Google Scholar
5 Finstad, T. G., Thin Solid Films 51, 411 (1978).10.1016/0040-6090(78)90305-XGoogle Scholar
6 Ottaviani, G., Tu, K. N., Chu, W. K., Hung, L. S. and Mayer, J. W., J. Appl. Phys. 53, 4903 (1982).Google Scholar
7 Corni, F., Gregorio, B. Grignaffini, Ottaviani, G., Queirolo, G. and Follegot, J. P., Appl. Surf. Scienc. 73, 197 (1993).10.1016/0169-4332(93)90166-9Google Scholar
8 Finstad, T. J., Mayer, J. W., and Nicolet, M.-A., Thin Solid Films, 51 (1978) 391.10.1016/0040-6090(78)90303-6Google Scholar
9 Zaring, C., Pisch, A., Cardenas, J., Gas, P., and Svensson, B. G., J. Appl. Phys. 80, 2742 (1996).10.1063/1.363202Google Scholar
10 Das, S. R., Xu, D. - X., Nourmia, M., Lebrun, L., and Naem, A., Mat. Res. Soc. Symp. Proc. 427, 541 (1996).10.1557/PROC-427-541Google Scholar
11 Nolan, T. P., Sinclair, R., and Beyers, R., J. Appl. Phys. 71, 720 (1992).10.1063/1.351333Google Scholar