Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T06:12:46.632Z Has data issue: false hasContentIssue false

Formation and Growth of Amorphous Phases by Solid-State Reactions Between Co Thin-Films and III-V Compound Semiconductors

Published online by Cambridge University Press:  21 February 2011

F.Y. Shiau
Affiliation:
Department fo Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706
Y.A. Chang
Affiliation:
Department fo Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706
Get access

Abstract

Solid-state amorphizaiton reactions (SSAR's) between Co thin-films and GaAs and InP have been investigated by transmission electron microscopy and Auger electron spectroscopy. Upon annealing at 260–300 °C, an amorphous phase was observed in the Co/GaAs system. Annealing at higher temperatures or for longer times led to the crystallization of this phase into a supersaturated CoAs structure. In the Co/InP system, annealing at 200°C for 1 hour led to the simultaneous formation of Co2P and an amorphous Co-In phase. At higher temperatures the amorphous phase crystallized into CoIn2 structure. For both systems, the amorphization reactions are attributed to the rapid diffusion of Co into the III-V substrates. The factors governing SSAR in ternary systems were discussed, with emphasis on the role of kinetics as opposed. to thermodynamic considerations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).Google Scholar
2. Schwarz, R. B., Wong, K. L., Johnson, W. L., and Clemens, B. M., J. Non-Cryst. Solids 61–62, 129 (1984).Google Scholar
3. Clemens, B. M., Johnson, W. L., and Schwarz, R. B., J. Non-Cryst. Solids 61–62, 817 (1984).Google Scholar
4. Newcomb, S. B. and Tu, K. N., Appl. Phys. Lett. 48, 1437 (1986).Google Scholar
5. Barbour, J. C., Saris, F. W., Wastasi, M., and Mayer, J. W., Phys. Rev. B 32, 1363 (1985).Google Scholar
6. Schroder, H., Samwer, K., and Koster, U., Phys. Rev. Lett. 54, 197 (1985).Google Scholar
7. Rossum, M. Van, Nicolet, M. A., and Johnson, W. L., Phys. Rev. B 29, 5498 (1984).Google Scholar
8. Herd, S. R., Tu, K. N., and Ahn, K. Y., Appl. Phys. Lett. 42, 597 (1983).Google Scholar
9. Holloway, K. and Sinclair, R., J. Appl. Phys. 61, 1359 (1987).Google Scholar
10. Lur, W. and Chen, L. J., Appl. Phys. Lett. 54,1217 (1989).Google Scholar
11. Avillez, R. R. de, Clevenger, L. A., Thompson, C. V., and Tu, K. N., J. Mater. Res. 5, 593 (1990).Google Scholar
12. Clevenger, L. A., Thompson, C. V., Avillez, R. R. de, and Tu, K. N., in Chemistry and Defects in Semiconductor Heterostructures, edited by Kawade, M., Sands, T. D., Williams, E. R. (Materials Research Society, Pittsburgh, PA, in press), Mater. Res. Soc. Symp.Google Scholar
13. Guilmin, P., Guyot, P., and Marchal, G., Phys. Letters 109A, 174 (1985).Google Scholar
14. Ruterana, P. and Buffat, P., Inst. Phys. Conf. Ser., in press, 1989.Google Scholar
15. Uskov, V. A., Fedotov, A. B., Eroteeva, E. A., Rodionov, A. I., and Dzhumakulov, D. T., Izv. Akad. Nauk SSSR, Neorgan. Mater. 23, 186 (1987).Google Scholar
16. Sands, T., Chang, C. C., Kaplan, A. S., Keramidas, V. G., Krishnan, K. M., and Washburn, J., Appl. Phys. Lett. 50 1346 (1987).Google Scholar
17. Caron-Popowich, R., Washburn, J., Sands, T., and Kaplan, A. S., J. Appl. Phys. 64, 4909 (1988).Google Scholar
18. Shiau, F. Y. and Chang, Y. A., Appl. Phys. Lett. 55, 1510 (1989).Google Scholar
19. Shiau, F. Y. and Chang, Y. A., Mat. Res. Soc. Symp. 148, 29 (1989).Google Scholar
20. Palmstrom, C. J., Chang, C. C., Yu, A., Galvin, G. J., and Mayer, J. W., J. Appl. Phys. 62, 3755 (1987).Google Scholar
21. Genut, M. and Eizenberg, M., J. Appl. Phys. 66, 5456 (1989).Google Scholar
22. Shiau, F. Y., Chang, Y. A., and Chen, L. J., J. Electron. Mater, 17, 433 (1988).Google Scholar
23. Shiau, F. Y., Zuo, Y., Lin, J. C., Zheng, X. Y., and Chang, Y. A., Z. Metallk. 80, 544 (1989).Google Scholar
24. Kulikov, G. S. and Nikulitsa, I. N., Sov. Phys. - Solid State 14, 2335 (1973).Google Scholar
25. Shishiyam, F. S., Gheorghiu, Y. Gh., and Palazov, S. K., Phys. Stat. Sol. (a) 40, 29 (1977).Google Scholar
26. Palfrey, H. D., Brown, M., and Willoughby, A. F. W., J. Electrochem. Soc. 128, 2224 (1981), and J. Electron. Mater. 12, 863 (1983).Google Scholar
27. Goldstein, B., Phys. Rev. 121, 1305 (1961).Google Scholar
28. Weibke, F. and Kubaschewski, O,“Thermochemic der Legievungen”, Springer, Berlin, 1943.Google Scholar
29. Predel, B. and Vogelbein, W., Thermochimica Acta 30, 179 (1979).Google Scholar
30. Tovopov, N. A. et al., Handbook of Phase Diagrams of Silicate Systems, Israel Program for Scientific Translations, Jerusalem, 1972.Google Scholar
31. Stadelmaier, H. H. and Manaktala, H. K., Acta Cryst. B 31, 374 (1975).Google Scholar