Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-18T16:08:31.506Z Has data issue: false hasContentIssue false

Formation and Characterization of Oxides on GaN surfaces

Published online by Cambridge University Press:  15 March 2011

D. Mistele
Affiliation:
Laboratory for Information Technology, University of Hanover, Schneiderberg 32, D-30167 Hannover, Germany
T. Rotter
Affiliation:
Laboratory for Information Technology, University of Hanover, Schneiderberg 32, D-30167 Hannover, Germany
F. Fedler
Affiliation:
Laboratory for Information Technology, University of Hanover, Schneiderberg 32, D-30167 Hannover, Germany
H. Klausing
Affiliation:
Laboratory for Information Technology, University of Hanover, Schneiderberg 32, D-30167 Hannover, Germany
O.K. Semchinova
Affiliation:
Laboratory for Information Technology, University of Hanover, Schneiderberg 32, D-30167 Hannover, Germany
J. Stemmer
Affiliation:
Laboratory for Information Technology, University of Hanover, Schneiderberg 32, D-30167 Hannover, Germany
J. Aderhold
Affiliation:
Laboratory for Information Technology, University of Hanover, Schneiderberg 32, D-30167 Hannover, Germany
J. Graul
Affiliation:
Laboratory for Information Technology, University of Hanover, Schneiderberg 32, D-30167 Hannover, Germany
Get access

Abstract

We characterized oxides formed directly on n-GaN surfaces. The methods used for oxide layer formation were both photoanodic oxidation and thermal oxidation. The photoanodic oxidation took place in aqueous solutions of potassium hydroxide with pH values lower than 13. Homogenous oxide films were obtained in the voltage range from -0.6 V to 0.4 V vs the saturated calomel electrode (SCE). The characterization of the oxide layers was performed primarily by Auger electron spectroscopy (AES). First the surface chemistry was determined, proving that Ga-oxide is formed with an attributed stoichiometry of Ga2O3. Secondly, depth profiling shows the oxide thickness to be dependent on the photoanodic voltage and oxidation time. Complementary X-ray diffraction (XRD) studies suggest an amorphous state of the formed layers. Annealing GaN in O2-atmospheres above 900°C also lead to surfaces fully covered with gallium oxide. We found that N-polar surfaces oxidize faster than Ga-polar surfaces, which is in agreement to the theoretical work of Zywietz et al [1]. Furthermore, we report on the electrical properties of the anodized oxide layers by analyzing MOS structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zywietz, T.K., Neugebauer, J., Scheffler, M., Appl. Phys. Lett. 74 (12), 1695 (1999)Google Scholar
2. Cao, X.A., Dang, G.T., Zhang, A.P., Ren, F., Hove, J.M. Van, Klaassen, J.J., Polley, C.J., Wowchak, A.M., Chow, P.P., King, D.J., Abernathy, C.R., Pearton, S.J., Electrochem. Solid-State Lett. 3 (3), 144 (2000)Google Scholar
3. Murphy, M.J., Foutz, B.E., Chu, K., Wu, H., Yeo, W., Schaff, W.J., Ambacher, O., Eastman, L.F., Eustis, T.J., Dimitrov, R., Stutzmann, M., Rieger, W., MRS Internet J. Nitride Semicond. Res. 4S1, G8.4 (1999)Google Scholar
4. Bardwell, J.A., Foulds, I., Lamontagne, B., Tang, H., Webb, J.B., Marshall, P., Rolfe, S.J., Stapledon, J., MacElwee, T.W., J. Vac. Sci. Technol. A 18 (2), 750 (2000)Google Scholar
5. Ren, F., Hong, M., Chu, S.N.G., Marcus, M.A., Shurman, M.J., Baca, A., Pearton, S.J., Abernathy, C.R., Appl. Phys. Lett. 73 (26), 3893 (1999)Google Scholar
6. Peng, L.-H., Liao, C.-H., Hsu, Y.-C., Jong, C.-S., Huang, C.-N., Ho, J.-K., Chiu, C.-C., Chen, C.-Y., Appl. Phys. Lett. 76 (4), 511 (2000)Google Scholar
7. Lile, D.L., Wilmsen, C.W., Physics and Chemistry of III-V Compound Semiconductor Interfaces, ed. Wilmsen, C.W., (Plenum Press, 1985), pp. 327 Google Scholar
8. Langer, D.W., Schuermeyer, F.L., Johnson, R.L., Singh, H.P., Litton, C.W., Hartnagel, H.L., J. Vac. Sci. Technol. 17 (5), 964 (1980)Google Scholar
9. Readinger, E.D., Wolter, S.D., Waltemyer, D.L., Delucca, J.M., Mohney, S.E., Prenitzer, B.I., Gianuzzi, L.A., Molnar, R.J., J. Electron. Mat. 28 (3), 257 (1999)Google Scholar
10. Rotter, T., Uffmann, D., Ackermann, J., Aderhold, J., Stemmer, J., Graul, J., Mat. Res. Soc. Symp. Proc. 482, 1003 (1998)Google Scholar
11. Youtsey, C., Romano, L.T., Molnar, R.J., Adesida, I., Appl. Phys. Lett. 74 (23), 3537 (1999)Google Scholar
12. Bardwell, J.A., Foulds, I.G., Webb, J.B., Tang, H., Fraser, J., Moisa, S., and Rolfe, S.J., J. Electron. Mater. 28, (19) L24 (1999)Google Scholar
13. Rotter, T., Aderhold, J., Mistele, D., Semchinova, O., Stemmer, J., Uffmann, D., Graul, J., Mat. Sci. Eng. B59, 350 (1999)Google Scholar
14. Handbook of Auger Electron Spectroscopy, ed. Hedberg, C.L., (Phys. Electron. Inc.,1985)Google Scholar
15. Rotter, T., Mistele, D., Stemmer, J., Fedler, F., Aderhold, J., Graul, J., Schwegler, V., Kirchner, C., Kamp, M., Heuken, M., to be published in Appl. Phys. Lett.Google Scholar
16. Okada, A., Ohnuki, Y., Inada, T., Appl. Phys. Lett. 33 (5), 447 (1978)Google Scholar
17. Passlack, M., Schubert, E.F., Hobson, W.S., Hong, M., Moriya, N., Chu, S.N.G., Konstadinidis, K., Mannaerts, J.P., Schnoes, M.L., Zydzik, G.J., J. Appl. Phys. 77 (2), 686 (1995)Google Scholar