Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T02:55:09.336Z Has data issue: false hasContentIssue false

Focused Ion Beam Induced Deposition

Published online by Cambridge University Press:  21 February 2011

John Melngailis
Affiliation:
Research Laboratory of Electronics, M.I.T., 77 Massachusetts Avenue, Cambridge, MA 02139
Patricia G. Blauner
Affiliation:
Research Laboratory of Electronics, M.I.T., 77 Massachusetts Avenue, Cambridge, MA 02139
Get access

Abstract

Focused ion beam induced deposition is already in use commercially for the repair of clear defects in photomasks, where missing absorber is added. Research is being carried out to extend this technique to the repair of x-ray lithography masks and to the restructuring and repair of integrated circuits, particularly in the prototype phase. In this technique a local gas ambient is created, for example, by aiming a small nozzle at the surface. The gas molecules are thought to adsorb on the surface and to be broken up by the scanned focused ion beam. A deposit is formed with linewidth equal to the beam diameter which can be below 0.1 Ό m. At small beam diameters and low currents (50–100 pA) the time to deposit 1Όm3 is in the vicinity of 10–20 sec. If the gas is a hydrocarbon, the deposit is largely carbon, which is useful for photomask repair. On the other hand, if the gas is a metal halide or a metal organic, the deposit is metallic. The deposits have substantial concentrations of impurities due to the atoms in the organometallic, to the ion species used, or to the ambient in the vacuum chamber. Thus the resistivities of the "metal" films deposited typically range from 150 to 1000 ΌΏcm which is usable for some repairs. (Pure metals have resistivities in the range 2.5 to 12 pQcm.) We have deposited gold from dimethyl gold hexafluoro acetylacetonate and have achieved linewidths down to 0.1 Όm, patches of 1 Όm thickness with steep side walls and in some cases, resistivities approaching the bulk value. Other workers have reported deposits of Al, W, Ta, and Cr. We will review previous work in the field and present some of our own current results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) For reviews of laser-microchemical processing see, for example, Ehrlich, D. J. and Tsao, J. Y., J. Vac. Sci. Technol. B 4 299 (1986) or D. Bauerle, Chemical Processing with Lasers (Springer, Berlin 1986).Google Scholar
(2) Black, J. G., Doran, S. P., Rothschild, M. and Ehrlich, D. J., Appl. Phys. Lett. 50, 1016 (1987).Google Scholar
(3) Matsui, S. and Mori, K., Jpn. J. Appl. Phys. 23 L706 (1984).Google Scholar
(4) Matsui, S. and Mori, K., J. Vac. Sci. Technol. B 4 299 (1986).Google Scholar
(5) Koops, H. W. P., Weiel, R., Kern, D. P. and Baum, T. H., J. Vac. Sci. Technol. B 6, 477 (1988).Google Scholar
(6) Kunz, R. R. and Mayer, T. M., Appl. Phys. Lett. 50, 962 (1987).Google Scholar
(7) Brunger, W., Microcircuit Engineering to be published (proceedings of Microcircuit Engineering Conference, Vienna, 1988).Google Scholar
(8) Matsui, S. and Mori, K., Appl. Phys. Lett. 51 1498 (1987).Google Scholar
(9) Wagner, A., Nucl. Instr. and Methods in Physics Research 218, 355 (1983).Google Scholar
(10) Cleaver, J. R. A., Ahmed, H., Heard, P. J., Prewett, P. D., Dunn, G. J., Kaufman, H., Microelectronic Engineering 3, 253 (1985).Google Scholar
(11) Yamamoto, M., Sato, M., Kyogoku, H., Aita, K., Nakagawa, Y., Yasaka, A., Takasawa, R., Hattori, O., SPIE vol. Q 632, 97 (1986).Google Scholar
(12) Kaufman, H. C., Thompson, W. B., and Dunn, G. J., SPIE vol.632 (1986).Google Scholar
(13) Ward, B. W., Shaver, D. C., Ward, M. L., SPIE 537, 110 (1985).Google Scholar
(14) Economou, N. P., Shaver, D. C., Ward, B., SPIE 773, 201 (1987).Google Scholar
(15) Robinson, W. P. and Parker, N. W., SPIE vol.773, 216 (1987).Google Scholar
(16) Heard, P. J., Prewett, P. D., and Lawes, R. A., Microelectronic Engineering 6, 597(1987).Google Scholar
(17) Sudraud, P., Benassayag, G. and Bon, M., Microelectronic Engineering 6, 583 (1987).Google Scholar
(18) Harriott, L. R., Applied Surface Science 36 432 (1989).Google Scholar
(19) Muiller, K. P., Weigmann, U., and Burghause, H., Microelectronic Engineering 5, 481 (1986).Google Scholar
(20) Petzold, H. C., Burghause, H., Putzar, R., Weigmann, U., Economou, N. P., and Stern, L. H., to be published SPIE Proceedings "Electron Beam, X-Ray and Ion Beam Technologies: Submicrometer Lithographies VIII (San Jose, Calif., Mar, 1989).Google Scholar
(21) Robinson, W. P., to be published SPIE Proceedings "Electron Beam, XRay and Ion Beam Technologies: Submicrometer Lithographies VIII" (presented San Jose March 1989).Google Scholar
(22) Stewart, D. K., Stern, L. A. and Morgan, J. C., to be published SPIE Proceedings "Electron Beam, X-Ray and Ion Beam Technologies: Submicrometer Lithographies VIII" (presented San Jose March 1989).Google Scholar
(23) Blauner, P. G., Ro, J. S., Butt, Y., Thompson, C. V. and Melngailis, J., Materials Research Society Proceedings, vol.129 (1989) to be published.Google Scholar
(24) Blauner, P. G., Ro, J. S., Butt, Y., Thompson, C. V. and Melngailis, J., J. Vac Sci. Technol. B to be published (July/Aug 1989).Google Scholar
(25) Gamo, K., Takakura, N., Samoto, N., Shimizu, R., and Namba, S., Jpn. J. Appl. Phys. 2 L293 (1984).Google Scholar
(26) Gamo, K., Takakura, N., Takehara, D., and Namba, S., Extended Abstract 16th International Conference on Solid State Devices and Materials (Kobe, Japan, 1984), p. 31.Google Scholar
(27) Gamo, K. and Namba, S., in Proceedings of Symposium on Reduced Temperature Processing for VLSI (Electrochemical Society, Pennington, NJ, 1986), vol.5.Google Scholar
(28) Gamo, K., Takehara, D., Hamamura, Y., Tomita, M. and Namba, S., Microelectronic Engineering 5, 163 (1986).Google Scholar
(29) Shedd, G. M., Dubner, A. D., Lezec, H. and Melngailis, J., Appl. Phys. Lett. 49 1584 (1986).Google Scholar
(30) Ro, J. S., Dubner, A. D., Thompson, C. V., Melngailis, J., Mat. Res. Soc. Symp. Proc. vol.101, p. 255 (Mat. Res. Soc. 1988).Google Scholar
(31) Dubner, A. D. and Wagner, A., J. Appl. Phys. to be published July 15, 1989.Google Scholar
(32) Dubner, A. D. and Wagner, A., J. Appl. Phys. to be published, May 1, 1989.Google Scholar
(33) Blauner, P. G., Butt, Y., Ro, J.S., Thompson, C. V., Melngailis, J., submitted for publication.Google Scholar
(34) Rudenauer, F. G., Steiger, W., and Schrottmayer, D., J. Vac. Sci. Technol B 6, 1542 (1988).Google Scholar
(35) Harriott, L. R. and Vasile, M. J., J. Vac. Sci. Technol. B, 6 1035 (1988).Google Scholar
(36) Melngailis, J., J. Vac. Sci. Technol. P,5 469 (1987).Google Scholar
(37) Wilson, I. H., Zheng, N. J., Knipping, V., and Tsong, I. S. T., Appl. Phys. Lett. 53, 2039 (1988).Google Scholar