Skip to main content Accessibility help
×
Home

Focused ION Beam Etching of GaN

  • C. Flierl (a1), I.H. White (a1), M. Kuball (a2), P.J. Heard (a3), G.C. Allen (a3), C. Marinelli (a1), J.M. Rorison (a1), R.V. Penty (a1), Y. Chen (a4) and S.Y. Wang (a4)...

Abstract

We have investigated the use of focused ion beam (FIB) etching for the fabrication of GaN-based devices. Although work has shown that conventional reactive ion etching (RME) is in most cases appropriate for the GaN device fabrication, the direct write facility of FIB etching - a well-established technique for optical mask repair and for IC failure analysis and repair - without the requirement for depositing an etch mask is invaluable. A gallium ion beam of about 20nm diameter was used to sputter GaN material. The etching rate depends linearly on the ion dose per area with a slope of 3.5 × 10-4 μm3/pC. At a current of 3nA, for example, this corresponds to an etch rate of 1.05μm3/s. Good etching qualities have been achieved with a side wall roughness significantly below 0.1μm. Changes in the roughness of the etched surface plane stay below 8nm.

Copyright

References

Hide All
[1] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., Chocho, K., Appl. Phys. Lett. 72, 211 (1998).
[2] Song, Y.-K., Kuball, M., Nurmikko, A.V., Bulman, G.E., Doverspike, K., Shappard, S.T., Weeks, T.W., Leonard, M., Kong, H.S., Dieringer, H., and Edmonds, J., Appl. Phys. Lett. 72, 1418 (1998).
[3] Wu, Y.-F., Keller, B.P., Keller, S., Nguyen, N.X., Le, M., Nguyen, C., Jenkins, T.J., Kehias, L.T., DenBaars, S.P., and Mishra, U.K., IEEE Elec. Dev. Lett. 18, 438 (1997).
[41 Yoshida, S. and Suzuki, J., Jpn. J. Appl. Phys. Pt. 2 37 482 (1998).
[5] Nakamura, S. and Fasol, G., “The blue laser diode: GaN based light emitters and lasers” (Springer, Berlin, New York, 1997).
[6] Ito, T., Ishikawa, H., Egawa, T., Jimbo, T., and Umeno, M., Jpn. J. Appl. Phys. Pt. 1 36, 7710 (1997).
[7] Katoh, H., Takeuchi, T., Anbe, C., Mizumoto, R., Yamaguchi, S., Wetzel, C., Amano, H., Akasaki, I., Kaneko, Y., and Yamada, N., Jpn. J. Appl. Phys. Pt. 2 37, 444 (1998).
[8] Mack, M.P., Via, G.D., Abare, A.C., Hansen, M., Kozodoy, P., Keller, S., Speck, J.S., Mishra, U.K., Coldren, L.A., and DenBaars, S.P., Electr. Lett. 34, 1315 (1998).
[9] Dowd, P., Heard, P.J., Nicholson, J.A., Raddatz, L., White, I.H., Penty, R.V., Day, J.C.C., Allen, G.C., Corzine, S.W., Tan, M.R.T., Electr. Lett. 33, 1315 (1997).
[10] Sargent, L.J., Kuball, M., Rorison, J.M., Penty, R.V., White, I.H., Heard, P. J., Tan, M. R. T., and Wang, S. Y., submitted to Appl. Phys. Lett.
[11] Vassilevski, K.V., Rastegaeva, M.G., Babanin, A.I., Nikitina, I.P., and Dmitriev, V.A., MRS Internet J. Nitride Semicond. Res. 1, 38 (1996).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed