Skip to main content Accessibility help

Fluoroalkyl Iodide Photodecomposition on Diamond (100) - an Efficient Route to The Fluorination of Diamond Surfaces

  • V. S. Smentkowski (a1) and J. T. Yates (a1)


The photodecomposition of CF3I and C4F9I overlayers at 119 K on diamond (100) surfaces has been shown to be an efficient route to fluorination of the diamond surface. X-ray photoelectron spectroscopy (XPS) has been used for photoactivation as well as for studies of the following processes: the photodecomposition of the fluoroalkyl iodide molecules: the attachment of the photofragments to the diamond surface; and the thermal decomposition of the fluoroalkyl ligands. Chemisorbed CF3 groups on diamond (100) decompose by 300 K whereas C4F9 groups decompose over the temperature range of 300 K to ∼ 700 K. Both of these thermal decomposition processes produce surface C-F bonds on the diamond surface which thermally decompose over a wide temperature range extending up to 1500 K. Hydrogen passivation of the diamond surface is ineffective in preventing free radical attack from the photodissociated products of the fluoroalkyl iodides. The use of photoactivation of fluoroalkyl iodides for the fluorination of diamond surfaces provides a convenient route compared to other methods involving the direct production of atomic F, molecular fluorine, XeF2, and F containing plasmas.



Hide All
1. Butler, J.E., Woodin, R.L., Phil. Trans. R. Soc. Lond. A. 342, 209 (1993): S.J. Harris, D.N. Belton, Thin Solid Films 212, 193 (1992); F.G. Celii, J.E. Butler, Ann. Rev. Chem. 42, 643 (1991): R.C. De Vries, Ann. Rev. Mater. Sci. 17, 161 (1987); J.C. Angus, C.C. Hayman, Science 241, 913 (1988).
2. Davis, R.F., Ed., Diamond Films and Coatings: Development, Properties, and Applications. (Noyes Publishing, New Jersey, 1993); J.E. Field, The Properties of Natural and Synthetic Diamonds, (Academic Publishers, New York, 1992): K.E. Spear, J.P. Dismukes. Eds., Synthetic Diamond: Emerging CVD Science and Technology, (Wiley Publishing, New York, 1993).
3. Spear, K.E.. J. Am. Chem. Soc. 72. 171 (1989): R.M. Chrenko. H.M. Strong, Report No. 75CRD089 (GE Corporate Research and Development Center), 1975.
4. Bachmann, P.K.. Messier, R.. Chemical and Engineering News 67 (20), 24 (1989).
5. Wei, J., Smentkowski, V.S., Yates, J.T. Jr., Critical Reviews in Surface Chemistry, in press.
6. Ritter, S.K., Chemical and Engineering News 73 (9), 39 (1995).
7. Handbook of Chemistry and Physics, 63rd ed (CRC Press, Florida, 19821983), p. F-199.
8. Hsu, D.S.Y., Turner, N.H., Proc. Fourth SDIO/IST ONR Diamond Technology Initiative Symposium, July 1989.
9. Patterson, D.E., Hauge, R.H., Margrave, I.L., in New Materials Approaches to Tribology: Theory and Applications, edited by Pope, L.E., Fehrenbacher, L.L., Winer, W.O (Mat. Res. Soc. Proc. 140. Pittsburgh, PA, 1989) pp. 351.
10. Freedman, A.. Stinespring, C.D., Appl. Phys. Lett. 57. 1194 (1990): Proc. Electrochem. Soc. 91. 494 (1991): New Diamond Sci. Technol.. Proc. Internat. Conf. 2. 321 (1991): in Chemical Perspectives of Microelectronic Materials II, edited by LV. Interrante (Mat. Res. Soc. Proc. 204 Pittsburgh, PA, 1991) pp. 571.
11. Morar, J.F., Himpsel, F.J., Hollinger, G., Jordon, J.L., Hughes, G., McFeely, F.R., Phys. Rev. B. 33, 1340 (1986); Phys. Rev. B. 33, 1346 (1986).
12. Cadman, P., Scott, J.D., Thomas, J.M., J. Chem. Soc. Chem. Comm. 1975. 654.
13. Smentkowski, V.S., Yates, J.T. Jr., Science, submitted.
14. Smentkowski, V. S., Yates, I.T., Jr., X. Chen. IIIGoddard, W.A., Surf. Sci., submitted.
15. Smentkowski, V.S.. Yates, J.T., Jr., J. Vac. Sci. Technol. All, 3002 (1993).
16. Smentkowski, V.S., Jansch, H.J., Henderson, M.A., Yates, J.T., Jr., Surf. Sci. 330, 207 (1995).
17. Bozack, M.J., Muehlhoff, L., Russell, J.N. Jr., Choyke, W.J., Yates, J.T., Jr., J. Vac. Sci. Technol. A 5, 1 (1987).
18. Cadman, P., Scott, J.D., Thomas, J.M., Surface and Interface Analysis 1, 115 (1979).
19. Pate, B.B., Surf. Sci. 165, 83 (1986); S. Evans, R.G. Pritchard, J.M. Thomas, J. Phys. C: Solid State Physics 10, 2483 (1977).
20. “Empirical Atomic Sensitivity Factors for MgKoc Irradiation”; (Leybold Vacuum Products, Inc., Export, PA, 1984). C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy, (Perkin Elmer Corporation. Eden Prairie. MN. 1979).
21. Tsumo, T., Imai, T., Nishibayashi, Y., Hamada, K., Fujimori, N., Japanese Journal of Applied Physics 30 (5), 1063 (1991); L.F. Sutcu, M.S. Thompson, C.J. Chu, R.H. Hauge, J.L. Margrave, M.P. D'Evelyn, Appl. Phys. Lett. 60 (14), 1686 (1992); K. V. Ravi, P.I. Oden, D.R. Yaniv, Proc. Electrochem. Soc. 93 (17), 766 (1993).
22. Ramsier, R.D., Yates, J.T., Jr. Surf. Sci. Reports 12, 243 (1991).
23. Okafo, E.N.. Whittle, E., Inter. J. of Chem. Kinetics 7, 287 (1975).
24. Okabe, H., Photochemistry of Small Molecules, (Wiley Press, New York, 1978).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed