Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-23T18:18:05.027Z Has data issue: false hasContentIssue false

Flexible, Lightweight, Amorphous Silicon Based Solar Cells on Polymer Substrate for Space and Near-Space Applications

Published online by Cambridge University Press:  27 June 2011

K. Beernink
Affiliation:
United Solar Ovonic LLC, 1100 West Maple Road, Troy, MI 48084-5352, USA
A. Banerjee
Affiliation:
United Solar Ovonic LLC, 1100 West Maple Road, Troy, MI 48084-5352, USA
J. Yang
Affiliation:
United Solar Ovonic LLC, 1100 West Maple Road, Troy, MI 48084-5352, USA
K. Lord
Affiliation:
United Solar Ovonic LLC, 1100 West Maple Road, Troy, MI 48084-5352, USA
F. Liu
Affiliation:
United Solar Ovonic LLC, 1100 West Maple Road, Troy, MI 48084-5352, USA
G. DeMaggio
Affiliation:
United Solar Ovonic LLC, 1100 West Maple Road, Troy, MI 48084-5352, USA
G. Pietka
Affiliation:
United Solar Ovonic LLC, 1100 West Maple Road, Troy, MI 48084-5352, USA
C. Worrel
Affiliation:
United Solar Ovonic LLC, 1100 West Maple Road, Troy, MI 48084-5352, USA
S. Guha
Affiliation:
United Solar Ovonic LLC, 1100 West Maple Road, Troy, MI 48084-5352, USA
Get access

Abstract

United Solar Ovonic has leveraged its history of making amorphous silicon solar cells on stainless steel substrates to develop amorphous silicon alloy (a-Si:H)-based solar cells and modules on ∼25 μm thick polymer substrate using high-throughput roll-to-roll deposition technology for space and near-space applications. The solar cells have a triple-junction a-Si:H/a-SiGe:H/a-SiGe:H structure deposited by conventional plasma enhanced CVD (PECVD) using roll-to-roll processing. The cells have distinct advantages in terms of high specific power (W/kg), high flexibility, ruggedness, rollability for stowage, and irradiation resistance. The large area (23.9 cm x 32.1 cm) individual cells manufactured in large quantity can be readily connected into modules and have achieved initial, 25 °C, AM0 aperture-area efficiency of 9.8% and initial specific power of 1200 W/kg. We have conducted light-soak studies and measured the temperature coefficient of the current-voltage characteristics to determine the stable values at an expected operating temperature of 60 °C. The stable total-area efficiency and specific power at 60 °C are 7.2% and 950 W/kg, respectively. In this paper, we review the challenges and progress made in development of the cells, highlight some applications, and discuss current efforts aimed at improving performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Guha, S., Yang, J., Banerjee, A., Glatfelter, T., Vendura, G.J. Jr., Garcia, A., and Kruer, M., 2nd World Conf. on Photo. Solar Ener. Conv. Proc., Vienna, 3609 (1998).Google Scholar
2. Banerjee, A., Liu, F., Beernink, K., Lord, K., DeMaggio, G., Yan, B., Pietka, G., Worrel, C., Xu, X., Yang, J., and Guha, S., Space Power Workshop, Los Angeles, CA (2009).Google Scholar
3. Xu, X., Lord, K., Pietka, G., Liu, F., Beernink, K., Worrel, C., DeMaggio, G., Banerjee, A., Yang, J., and Guha, S., 33rd IEEE Photov. Spec. Conf. Proc., San Diego, CA (2008).Google Scholar
4. Banerjee, A., Beernink, K., Xu, X., Yan, B., Lord, K., Liu, F., DeMaggio, G., Pietka, G., Worrel, C., Yang, J., and Guha, S., Space Power Workshop, Manhattan Beach, CA (2008).Google Scholar
5. Liu, F., Owens, J., Pietka, G., Beernink, K., Banerjee, A., Yang, J., and Guha, S., 34th IEEE Photov. Spec. Conf. Proc., Philadelphia, PA, 1370-1373 (2009).Google Scholar
6. Liu, F., Beernink, K., Xu, X., Banerjee, A., DeMaggio, G., Pietka, G., Yang, J., and Guha, S., 33rd IEEE Photov. Spec. Conf. Proc., San Diego, CA (2008).Google Scholar
7. Beernink, K., Pietka, G., Noch, J., Younan, K., Wolf, D., Banerjee, A., Yang, J., Jones, S., and Guha, S., Proceedings of the Mater. Res. Soc. Symp. Proc., paper V6.2, San Francisco (2002).Google Scholar
8. Beernink, K.J., Pietka, G., Noch, J., Wolf, D., Banerjee, A., Yang, J., Guha, S., and Jones, S.J., 29th IEEE PVSC, 9981001 (2002).Google Scholar
9. Banerjee, A., Xu, X., Beernink, K., Liu, F., Lord, K., DeMaggio, G., Yan, B., Su, T., Pietka, G., Worrel, C., Ehlert, S., Beglau, D., Yang, J., and Guha, S., 35th IEEE PVSC, 26512655 (2010).Google Scholar
10. Stribling, R., Space Power Workshop, Los Angeles, CA (2007).Google Scholar
11. Barret, R. and Taylor, R., Nanotech Conference and Expo 2009, Houston (2009).Google Scholar
12. QinetiQ Group PLC, www.qinetiq.com.Google Scholar
13. Xu, X. et al. ., 34th IEEE PVSC, pp. 21592164 (2009).Google Scholar
14. Meier, J. et al. ., Appl. Phys. Lett. 65, 860862 (1994).10.1063/1.112183Google Scholar