Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-23T04:24:57.281Z Has data issue: false hasContentIssue false

First-Principles Study of N Impurities in SiC Polytypes

Published online by Cambridge University Press:  10 February 2011

W. Windl
Affiliation:
Computational Materials Group, Motorola, Inc., MS B268, Los Alamos National Laboratory, Los Alamos, NM 87545
A. A. Demkov
Affiliation:
Computational Materials Group, Motorola, Inc., MS B268, Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

We investigate theoretically the energetics of nitrogen impurities in β-SiC, their geometrical relaxation, and electronic properties. We find that density-functional theory is able to calculate donor-ionization energies accurately once large enough simulation cells are used. For neutral interstitial defects, we find that configurations where N is three-fold coordinated have very low formation energies and high binding energies with the involved native defects. At the same time, such configurations introduce deep levels into the gap which may result in a non-activation of the donor

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fukumoto, A., phys. stat. sol. B 202, 125 (1997).Google Scholar
2. Kimoto, T., Inoue, N., and Matsunami, H., phys. stat. solidi A 162, 263 (1997) and references therein.Google Scholar
3. See, e.g., Karch, K., Pavone, P., Windl, W., Schütt, O., and Strauch, D., Phys. Rev. B 50, 17054 (1994);Google Scholar
Lambrecht, W. R. L., Limpijumnong, S., Rashkeev, S. N., and Segall, B., phys. stat. sol. (b) 202, 5 (1997);Google Scholar
van Haeringen, W., Bobbert, P. A., and Backes, W. H., phys. stat. sol. (b) 202, 63 (1997);Google Scholar
Wellenhofer, G. and Rössler, U., phys. stat. sol. (b) 202, 107 (1997);Google Scholar
4. See, e.g., Lin-Chung, P. J., Inst. Phys. Conf. Ser. 142, 465 (1996);Google Scholar
Chen, A.-B. and Srichaikul, P., phys. stat. sol. (b) 202, 81 (1997);Google Scholar
Fukumoto, A., phys. stat. sol. (b) 202, 125 (1997);Google Scholar
Pollmann, J., Krfiger, P., and Sabisch, M., phys. stat. sol. (b) 202, 421 (1997).Google Scholar
5. Miyajima, T., Tokura, N., Fukumoto, A., Hayashi, H., and Hara, K., Jpn. J. Appl. Phys. 35, 1231 (1996).Google Scholar
6. Demkov, A.A., Ortega, J., Sankey, O.F., and Grumbach, M.P., Phys. Rev. B 52, 1618 (1995);Google Scholar
Sankey, O.F., Demkov, A.A., Windl, W., Fritsch, J.H., Lewis, J.P., and Fuentes-Cabrera, M., Int. J. Quantum Chem. (in print).Google Scholar
7. See, e.g., Demkov, A. A. and Sankey, O. F., Phys. Rev. B 48, 2207 (1993);Google Scholar
Demkov, A. A., Windl, W., and Sankey, O. F., Phys. Rev. B 53, 11288 (1996).Google Scholar
Windl, W., Sankey, O. F., and Menéndez, J., Phys. Rev. B 57, 2431 (1998).Google Scholar
8. Windl, W., Lenosky, T. J., Kress, J. D., and Voter, A. F., Nucl. Inst. and Meth. in Phys. Res. B (in print).Google Scholar
9. Kresse, G. and Hafner, J., Phys. Rev. B 49, 14 251 (1994);Google Scholar
Kresse, G. and Furthmiiller, J., Phys. Rev. B 55, 11 169 (1996) and references therein.Google Scholar
10. Bernholc, j., Kajihara, S. A., Wang, C., and Antonelli, A., Mat. Sci. Eng. B 11 265, 1992 and references therein.Google Scholar
11. In reality, there exists no perfect stoichiometry for SiC crystals; therefore, the appropriate reference reservoirs are bulk Si and SiC for the Si-rich, and graphite and bulk SiC for the C-rich compound. Therefore, depending on the composition, the formation energies have to be adjusted by adding/subtracting the appropriate multiples of theβ-SiC cohesive energy of ECoh∼ 0.7 eV (the formation energy of a vacancy (anti-site) at a majority site, e.g., should be increased by Ecoh (2Ecoh), etc.). See, e.g., Ref. 1.Google Scholar