Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T16:31:28.723Z Has data issue: false hasContentIssue false

First-Principles Study of Mechanical Properties of Alumina-Copper Nano-Coating Interfaces

Published online by Cambridge University Press:  01 February 2011

Shingo Tanaka
Affiliation:
Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563–8577, Japan.
Rui Yang
Affiliation:
Department of Computer Science, Faculty of Engineering and Information Technology Australian National University, Canberra, ACT 0200, Australia.
Masanori Kohyama
Affiliation:
Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563–8577, Japan.
Get access

Abstract

Mechanical properties of alumina-copper nano-coating interfaces have been studied by the first-principles calculations. We have applied the rigid-type first-principles tensile tests for O-rich (O-terminated) and stoichiometric (Al-terminated) interfaces and for back Cu1st-Cu2nd interlayers. The O-terminated interface is twice as strong as the Cu1st-Cu2nd interlayer whereas the Al-terminated interface is twice as weak as the Cu1st-Cu2nd interlayer. We have performed the fitting of interlayer potentials by universal binding-energy relation (UBER). The interlayer potential of the Cu-Al interface is well reproduced by UBER in whole region, although those of Cu-O interface and Cu1st-Cu2nd interlayer are partially reproduced.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Finnis, M. W., J. Phys. Condens. Matter. 8, 2721 (1996).Google Scholar
2. Benedek, R., Minkoff, M. and Yang, L. H., Phys. Rev. B 54, 7697 (1995).Google Scholar
3. Hong, T., Smith, J. R. and Srolovitz, D. J., J. Adhesion Sci. Tech. 8, 837 (1994).Google Scholar
4. Hong, T., Smith, J. R. and Srolovitz, D. J., Acta mater. 43, 2721 (1995).Google Scholar
5. Zhang, W. and Smith, J. R., Phys. Rev. Lett. 85, 3225 (2000).Google Scholar
6. Zhang, W., Smith, J. R. and Evans, A. G., Acta Mater. 50, 3803 (2002).Google Scholar
7. Zhao, G. L., Smith, J. R., Raynolds, J. and Srolovitz, D. J., Interface Sci. 3, 289 (1996).Google Scholar
8. Batyrev, I. G., Alavi, A., Finnis, M. W. and Deutsch, T., Phys. Rev. Lett. 82, 1510 (1999).Google Scholar
9. Batyrev, I. G. and Kleinmann, L., Phys. Rev. B 64, 033410 (2001).Google Scholar
10. Tanaka, S., Yang, R., Kohyama, M., Sasaki, T., Matsunaga, K. and Ikuhara, Y., Mater. Trans. 45, 1973 (2004).Google Scholar
11. Yang, R., Tanaka, S. and Kohyama, M., Phil. Mag. Lett. 84, 425 (2004).Google Scholar
12. Sasaki, T., Matsunaga, K., Ohta, H., Hosono, H., Yamamoto, T. and Ikuhara, Y., Sci. Tech. Adv. Mater. 4, 575 (2003).Google Scholar
13. Rose, J. H., Smith, J. R. and Ferrante, J., Phys. Rev. B 28, 1835 (1983).Google Scholar
14. Banerjea, A. and Smith, J. R., Phys. Rev. B 37, 6632 (1988).Google Scholar
15. Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991).Google Scholar
16. Kleinman, L. and Bylander, D. M., Phys. Rev. Lett. 48, 1425 (1982).Google Scholar
17. Kresse, G. and Furthmüller, J., Phys. Rev. B, 43, 1993 (1991).Google Scholar
18. Pulay, P., Chem. Phys. Lett., 73, 393 (1980).Google Scholar
19. Bylander, D. M., Kleinman, L. and Lee, S., Phys. Rev. B 42, 4021 (1990).Google Scholar
20. Kerker, G. P., Phys. Rev. B, 23, 3082 (1981).Google Scholar
21. Pulay, P., J. Comp. Chem. 3, 556 (1982).Google Scholar
22. Tamura, T., Lu, G.–H., Yamamoto, R., Kohyama, M., Tanaka, S. and Tateizumi, Y., Modell. Simul. Mater. Sci. Eng. 12, 945 (2004).Google Scholar
23. Yang, R., Tanaka, S. and Kohyama, M., Phys. Rev. B, submitted.Google Scholar
24. Dmitriev, S. V., Yoshikawa, N., Kagawa, Y. and Kohyama, M., Surf. Sci. 542, 45 (2003).Google Scholar
25. Dmitriev, S. V., Yoshikawa, N., Kohyama, M., Tanaka, S., Yang, R. and Kagawa, K., Acta Mater. 52, 1959 (2004).Google Scholar