Skip to main content Accessibility help

First-Principles Modeling for Current-Voltage Characteristics of Resistive Random Access Memories

  • Takehide Miyazaki (a1), Hisao Nakamura (a1), Kengo Nishio (a1), Hisashi Shima (a2), Hiroyuki Akinaga (a2) and Yoshihiro Asai (a1)...


We present results of first-principles non-equilibrium Green’s function calculations for current-voltage (IV) characteristics of the electrode/HfO2/electrode model systems. In order to investigate the effect of the electrode materials on the IV characteristics, we considered two transition metals for electrode, Ta and W, which are both body-centered-cubic elemental metals but have different valence numbers. We simulated the ON state by placing oxygen vacancies in the HfO2 layer while the OFF state was modeled with HfO2 without oxygen vacancies. At the OFF state, no electric current flowed for -1 V up to +1 V, as expected. At the ON state, however, we found that the absolute current for the Ta electrode was twice as large as that for the W electrode. The analysis of the IV characteristics shows that the electronic coupling between Ta and HfO2 is substantially stronger than that between W and HfO2. Our study demonstrates the importance of the matching between electrode and insulator materials to achieve a high ON- to OFF-current ratio in ReRAMs at a low bias.



Hide All
1. Akinaga, H. and Shima, H., Proc. IEEE 98, 2237 (2010).
2. Bruchhaus, R. and Waser, R., in Thin Film Metal-Oxides: Fundamentals and Applications in Electronics and Energy, Springer Science+Business Media, LLC 2010, p.131.
3. Sawa, A., Mater. Today 11, 28 (2006).
4. Lee, H. D., Magyari-Koepe, B., and Nishi, Y., Phys. Rev. B 81, 193202 (2010).
5. Magyari-Koepe, B. et al. ., Nanotechnology 22, 254029 (2011).
6. Magyari-Koepe, B., Park, S.-G., Lee, H. D., and Nishi, Y., J. Mater. Sci. 47, 7498 (2012).
7. Chen, Y. Y. et al. ., Appl. Phys. Lett. 100, 113513 (2012).
8. Oka, K. et al. ., J. Am. Chem. Soc. 134, 2535 (2012).
9. Kishi, H. et al. ., Jpn. J. Appl. Phys. 50, 071101 (2011).
10. Nakamura, H. et al. ., J. Phys. Chem. C115, 19931 (2011).
11. Baik, H. S., Kim, M., Park, G.-S, Song, S. A., Varela, M., Franceschetti, A., Pantelides, S. T., and Pennycook, S. J., Appl. Phys. Lett. 85, 672 (2004).
12. Fonseca, L. R. C. and Knizhnik, A. A., Phys. Rev. B 74, 195304 (2006).
13. Xiong, K., Robertson, J., Pourtois, G., Petry, J., and Muller, M., J. Appl. Phys. 104, 074501 (2008).
14. Prodhomme, P.-Y., Fontaine-Vive, F., Van Der Geest, A., Blaise, P., and Even, J., Appl. Phys. Lett. 99, 022101 (2011).
15. Jang, J. H., Jung, H.-S., Kim, J. H., Lee, S. Y., Hwang, C. S., and Kim, M., J. Appl. Phys. 109, 023817 (2011).
16. Sowinska, M., Bertaud, T., Walczyk, D., Thiess, S., Schubert, M. A., Lukosius, M., Drube, W., Walczyk, Ch., and Schroeder, T., Appl. Phys. Lett. 100, 233509 (2012).
17. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I. et al. ., J. Phys.: Condens. Matter 21, 395502 (2009). See
18. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).
19. Laasonen, K., Pasquarello, A., Car, R., Lee, C. and Vanderbilt, D., Phys. Rev. B 47, 10142 (1993).
20. Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5408 (1981).
21. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).
22. Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).
23. Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., and Sánchez-Portál, D., J. of Phys.: Condens. Matter 14, 2745 (2001).
24. Helgaker, T., Jorgensen, P., Olsen, J., Molecular Electronic-Structure Theory. (John Wiley & Sons, 2000).
25. Sancho, M. P. L., Sancho, J. M. L., and Rubio, J., J. Phys. F: Met. Phys. 14, 1205 (1984).
26. Datta, S., Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995).
27. De Stefano, F., Houssa, M., Afanas’ev, V. V., Kittl, J., Jurczak, M., and Stesmans, A., Thin Solid Films 533, 15 (2013).
28. Momma, K. and Izumi, F., J. Appl. Crystalogr. 41, 653 (2008).


First-Principles Modeling for Current-Voltage Characteristics of Resistive Random Access Memories

  • Takehide Miyazaki (a1), Hisao Nakamura (a1), Kengo Nishio (a1), Hisashi Shima (a2), Hiroyuki Akinaga (a2) and Yoshihiro Asai (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed