Skip to main content Accessibility help
×
Home

First Observation of Atomic Long Range Ordering in Metal-Oxide Based ZnMgO Wide Bandgap Heterostructures

  • R. D. Vispute (a1) (a2), S. Choopun (a1), Y. H. Li (a2), D. M. Chalk (a1), S. B. Ogale (a1), R. P. Sharma (a1), T. Venkatesan (a1) (a3) and A. Iliadis (a3)...

Abstract

We report the first observation of atomic long range ordering in the metal-oxide based wide bandgap (3.68 eV) ZnMgO alloy semiconductor thin films grown on sapphire (0001) by pulsed laser deposition. The ZnMgO system has the hexagonal wurtzite structure. The atomic ordering was deduced from the observations of forbidden x-ray diffraction peaks in the wurtzite structure. We show that under optimum thin film growth conditions, Zn and Mg preferentially occupy hcp sublattice. The relative intensity of the superlattice peak was largest for the Mg content in the range of 10%, which is about 50% of the solubility of Mg in ZnO. The observation of long range order in ZnMgO alloy semiconductor is quite important in the context of understanding issues related to the growth kinetics, surface reconstruction, and phase stability of metal-oxide based heterostructures and devices.

Copyright

References

Hide All
[1] Nakamura, S. and Fasol, G., The Blue Laser Diode (Springer, Berlin, 1997).
[2] Choopun, S., Vispute, R. D., Noch, W., Balsamo, A., Sharma, R. P., Venkatesan, T., Illiadis, A. and Look, D. C., Appl. Phys. Lett. 75, (1999).
[3] Tang, Z. K., Wong, G. K. L., Yu, P., Kawasaki, M., Ohtomo, A., Koinuma, H., and Segawa, Y., Appl. Phys. Lett. 72, 3270 (1998).
[4] Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, H., Sakurai, Y., Yoshida, Y., Yasuda, T., and Segawa, Y., Appl. Phys. Lett. 72, 2466 (1998).
[5] Sharma, A.K., Narayan, J., Muth, J.F., Teng, C.W., Jin, C., Kvit, A., Kolbas, R.M., and Holland, O.W., Appl. Phys. Lett. 75, 3327 (1999).
[6] Kuan, T. S., Kuech, T. F., Wang, W. I., and Wilkie, E. L., Phys. Rev. Lett. 54, 201 (1985).
[7] Jen, H. R., Chemg, M. J., and Stringfellow, G. B., Appl. Phys. Lett. 48, 1603 (1986).
[8] Shahid, M. A., Mahajan, S., Laughlin, D. E., and Cox, H. M., Phys. Rev Lett. 58, 2567 (1987).
[9] Korakakis, D., Ludwig, K. F. Jr, and Moustakas, T. D., Appl. Phys. Lett. 71, 72 (1997).
[10] Doppalapudi, D., Basu, S. N., and Moustakas, T. D., J. Appl. Phys. 85, 883 (1999).
[11] Gomyo, A., Kobayashi, K., Kawata, S., Hino, I., and Suzuki, T., J. Crystal Growth 77, 367 (1986).
[12] Ruterana, P., Nouet, G., Van der Stricht, W., Moerman, I., and Considine, L., Appl. Phys. Lett. 72, 1742 (1998).
[13] Choopun, S., Vispute, R. D., Sharma, R. P., and Venkatesan, T., (to be published). 194

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed