Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T19:24:31.254Z Has data issue: false hasContentIssue false

Field Emission Mechanism of H-Terminated N-Type Diamond NEA Surface

Published online by Cambridge University Press:  10 January 2012

Takatoshi Yamada
Affiliation:
Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan
Masataka Hasegawa
Affiliation:
Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan
Hisato Yamaguchi
Affiliation:
Department of Physics, International Christian University, 3-10-2 Osawa, Mitaka 181-8585, Japan
Yuki Kudo
Affiliation:
Department of Physics, International Christian University, 3-10-2 Osawa, Mitaka 181-8585, Japan
Ken Okano
Affiliation:
Department of Physics, International Christian University, 3-10-2 Osawa, Mitaka 181-8585, Japan
Christoph E. Nebel
Affiliation:
Fraunhofer Institute of Applied Solid State Physics (FIA), Freiburg 79108, Germany
Get access

Abstract

Field electron emission model of hydrogen-terminated n-type diamond was discussed. Ultra-violet photoelectron spectroscopy characterizations indicated that the electron affinity was -0.7 eV and an internal barrier of about 3.5 eV existed on the surface. Field electron emission properties depended on anode-diamond distances. Schottky barrier lowering model suggested that this internal barrier was lowered by the electric field (5.4x106 V/cm) applied onto the negative electron affinity surface of the H-terminated n-type diamond.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vacuum Micro-Electronics, edited by Zhu, W. (Wiley, New York, 2001).Google Scholar
2. Yamada, T., Okano, K., Yamaguchi, H., Shikata, S., Kato, H. and Nebel, C. E., Appl. Phys. Lett. 88, 212114 (2006).Google Scholar
3. Yamada, T., Yamaguchi, H., Kudo, Y., Okano, K., Shikata, S. and Nebel, C. E., J. Vac. Sci. Technol. B 25 528 (2007).Google Scholar
4. Yamada, T., Nebel, C. E. and Taniguchi, T., J. Vac. Sci. Technol. B 29 02B115 (2011).Google Scholar
5. Yamada, T., Nebel, C. E., Kumaragurubaran, S., Uetsuka, H., Yamaguchi, H., Kudo, Y., Okano, K. and Shikata, S., phys. stat. sol. (a) 204 2957 (2007).Google Scholar
6. Yamada, T., Sawabe, A., Okano, K., Koizumi, S. and Itoh, J., Appl. Phys. Lett. 76 1297 (2000).Google Scholar
7. Diederich, L., Kutttel, O. M., Aebi, P. and Schlapbach, L., Surf. Sci. 418 219 (1998).Google Scholar
8. Kumaragurubaran, S., Yamada, T. and Shikata, S., Diam. Relat. Mater. 17 1969–1971 (2008).Google Scholar
9. Yamada, T., Kato, H., Shikata, S., Nebel, C. E., Yamaguchi, H., Kudo, Y. and Okano, K., J. Vac. Sci. Technol. B 24 967 (2006).Google Scholar
10. Yamada, T., Nebel, C. E., Rezek, B., Takeuchi, D., Fujimori, N., Namba, A., Nishibayashi, Y., Yamaguchi, H., Saito, I. and Okano, K., Appl. Phys. Lett. 87 234107 (2005).Google Scholar
11. Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).Google Scholar
12. Suzuki, M., Yoshida, H., Sakuma, N., Ono, T., Sakai, T. and Koizumi, S., Appl. Phys. Lett. 84 2349 (2004).Google Scholar