Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-20T16:35:05.306Z Has data issue: false hasContentIssue false

Field Effect Transistor Structure Based on Strain Induced Polarization Charges

Published online by Cambridge University Press:  28 February 2011

D.L. Smith
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
R.T. Collins
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
T.F. Kuech
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
C. Mailhiot
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
Get access

Abstract

We suggest a new field effect transistor based on strain-induced polarization charges. The structure utilizes the pseudomorphic growth of a strained barrier layer on a substrate oriented in a polar direction such as [111] or [211]. Polarization charges in the barrier layer are generated by the piezoelectric effect. A two-dimensional (2-D) electron gas, whose density can be modulated by an external bias, forms at the hetero-interface and it screens the polarization charge. Zero bias densities of several 1011 e/cm2 and threshold voltages of 0.5 V can be achieved. Both normally-on and normally-off structures are possible.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974); 29, 273 (1975; 32, 265 (1976).Google Scholar
2Osbourn, G. C., Biefeld, R. M., and Gourley, P. L., Appl. Phys. Lett. 41, 172 (1982).Google Scholar
3Fritz, I. J., Dawson, L. R., and Zipperian, T. E., Appl. Phys. Lett. 43, 846 (1983).Google Scholar
4Smith, D. L., Solid State Commun. 57, 919 (1986).Google Scholar
5Smith, D. L. and Mailhiot, C., Phys. Rev. Lett. 58, 1264 (1987).Google Scholar
6Mailhiot, C. and Smith, D. L., Phys. Rev. B37, 10415 (1988).Google Scholar
7Laurich, B. K., Elcess, K., Fonstad, C. G., Beery, J. G., Mailhiot, C., and Smith, D. L., Phys. Rev. Lett, 62, 649 (1989).Google Scholar
8Beery, J. G., Laurich, B. K., Maggiore, C. J., Smith, D. L., Elcess, K., Fonstad, C. G., and Mailhiot, C., Appl. Phys. Lett. 54, 233 (1989).Google Scholar
9Laurich, B. K., Smith, D. L., Elcess, K., Fonstad, C. G., and Mailhiot, C., Superlatt. and Microstruc. 5, 341 (1989).Google Scholar
10Smith, D. L. and Mailhiot, C., J. Appl. Phys. 63, 2717 (1988).Google Scholar
11Solomon, P. M., Proc. IEEE 70, 489 (1982).Google Scholar
12Solomon, P. M., Knoedler, C. M., and Wright, S. L., IEEE Trans. Electron Device Lett. EDL–5, 379 (1984).Google Scholar
13Baratte, H., Solomon, P. M., LaTulippe, D. C., Jackson, T. N., Frank, D. J., and Wright, S. L., IEEE Trans. Electron Device Lett. EDL–8, 486 (1987).Google Scholar
14Kuech, T. F., Collins, R. T., Smith, D. L., and Mailhiot, C., J. Appl. Phys. (to be published).Google Scholar