Skip to main content Accessibility help
×
Home

Field Dependent Carrier Transport Mechanisms in Metal-Insulator–Metal Devices with Ba0.8Sr0.2TiO3/ ZrO2 Heterostructured Thin Films as the Dielectric

  • Santosh K. Sahoo (a1) (a2), H. Bakhru (a3), Sumit Kumar (a4), D. Misra (a2), Colin A. Wolden (a5), Y. N. Mohapatra (a6) and D. C. Agrawal (a6)...

Abstract

Ba0.8Sr0.2TiO3/ZrO2 heterostructured thin films with different individual layer ZrO2 thicknesses are deposited on Pt/Ti/SiO2/Si substrates by a sol-gel process. The current versus voltage (I-V) measurements of the above multilayered thin films in metal-insulator-metal (MIM) device structures are taken in the temperature range of 310 to 410K. The electrical conduction mechanisms contributing to the leakage current at different field regions have been studied in this work. Various models are used to know the different conduction mechanisms responsible for the leakage current in these devices. It is observed that Poole-Frenkel mechanism is the dominant conduction process in the high field region with deep electron trap energy levels (φ t ) whereas space charge limited current (SCLC) mechanism is contributing to the leakage current in the medium field region with shallow electron trap levels (E t ). Also, it is seen that Ohmic conduction process is the dominant mechanism in the low field region having activation energy (E a ) for the electrons. The estimated trap level energy varies from 0.2 to 1.31 eV for deep level traps and from 0.08 to 0.18 eV for shallow level traps whereas the activation energy for electrons in ohmic conduction process varies from 0.05 to 0.17 eV with the increase of ZrO2 sub layer thickness. An energy band diagram is given to explain the dominance of the various leakage mechanisms in different field regions for these heterostructured thin films.

Copyright

References

Hide All
1. Fang, L., Shen, M., Yang, J., and Li, Z., solid state commun. 137, 381 (2006).
2. Wenger, C., Albert, M., Adolphi, B., et al. ., Materials Science in Semiconductor Processing 5, 233 (2003).
3. Ohishi, M., Shiraishi, M., Ochi, K., Kubozono, Y., and Kataura, H., Appl. Phys Lett. 89, 203505 (2006).
4. Lin, Y. -B. and Ya-min Lee, J., J. Appl. Phys. 87, 1841 (2000).
5. Weste, Neil H. E. and Harris, D., CMOS VLSI Design, A circuit and system perspective, 3 rd Edition, (Addison-Wesley, Boston, 2005).
6. Reymond, V., Michau, D., Payan, S and Maglione, M, J. Phys. Condens. Matter 16, 9155 (2004).
7. Sahoo, S. K., Agrawal, D. C., Mohapatra, Y. N., Majumdar, S. B., Katiyar, R. S., Appl. Phys. Lett. 85, 5001 (2004).
8. Jain, M., Majumdar, S. B., Katiyar, R. S., and Bhalla, A. S., Thin Solid Films 447, 537 (2004).
9. Sze, S. M., Physics of Semiconductor Devices, 2 nd ed., Wiley-Interscience,(1981).
10. Sahoo, S. K., Misra, D., Agrawal, D. C., Mohapatra, Y. N., Majumder, S. B., and Katiyar, R. S., J. Appl. Phys. 108, 074112 (2010).
11. Jain, M., Majumder, S. B., Yuzyuk, Yu. I., Katiyar, R. S., Bhalla, A.S., Miranda, F.A., Van Keuls, F.W., Ferro. Lett. Sectn. 30, 99 (2003).
12. Sahoo, S. K., Patel, R. P., and Wolden, C. A., Appl. Phys. Lett. 101, 142903 (2012).
13. Peng, C. –J. and Krupanidhi, S. B., IEEE, 460 (1995).
14. Wang, S. Y., CHENG, B. L., Wang, C., Dai, S.Y., Lu, H. B., Zhou, Y. L., Chen, Z. H., Yang, G. Z., Appl. Phys. A 81, 1265 (2005).
15. Alimardani, N., Cowell, E. W., Wager, J. F., Conley, J. F., Evans, D. R., Chin, M., Kilpatrick, S. J., and Dubey, M., J. Vac. Sci. Technol. A 30(1), 01A113–1 (2012).
16. Sahoo, S. K. and Misra, D., J. Appl. Phys. 110, 084104, (2011).
17. Sahoo, S. K. and Misra, D., Appl. Phys. Lett. 100, 232903 (2012).

Keywords

Related content

Powered by UNSILO

Field Dependent Carrier Transport Mechanisms in Metal-Insulator–Metal Devices with Ba0.8Sr0.2TiO3/ ZrO2 Heterostructured Thin Films as the Dielectric

  • Santosh K. Sahoo (a1) (a2), H. Bakhru (a3), Sumit Kumar (a4), D. Misra (a2), Colin A. Wolden (a5), Y. N. Mohapatra (a6) and D. C. Agrawal (a6)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.