Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T03:38:21.839Z Has data issue: false hasContentIssue false

Fibers of Carbon Nanotubes

Published online by Cambridge University Press:  15 March 2011

Brigitte Vigolo
Affiliation:
Centre de Recherche Paul Pascal / CNRS, Université Bordeaux I, Avenue Schweitzer, 33600 Pessac, France
Pascale Launois
Affiliation:
Laboratoire de Physique des Solides (UMR CNRS 8502), bât. 510, Université Paris-Sud, 91405 Orsay, France
Marcel Lucas
Affiliation:
Laboratoire de Physique des Solides (UMR CNRS 8502), bât. 510, Université Paris-Sud, 91405 Orsay, France
Stéphane Badaire
Affiliation:
Centre de Recherche Paul Pascal / CNRS, Université Bordeaux I, Avenue Schweitzer, 33600 Pessac, France
Patrick Bernier
Affiliation:
GDPC, Université de Montpellier II, 34095 Montpellier, France
Philippe Poulin
Affiliation:
Centre de Recherche Paul Pascal / CNRS, Université Bordeaux I, Avenue Schweitzer, 33600 Pessac, France
Get access

Abstract

We briefly review some methods recently proposed to make films and fibers of preferentially oriented carbon nanotubes. We discuss in more detail a simple spinning process which consists in dispersing the nanotubes in a surfactant solution, re-condensing the nanotubes in the flow of a coagulating polymer solution to form a nanotube mesh, and then collating this mesh to a nanotube fiber. We measure the mechanical properties of the obtained fibers and characterize the nanotube alignment along the fiber axis by X-ray scattering experiments. We show that the alignment can be improved by stretching the fibers under well-defined conditions. This allows the Young's modulus to be increased by a factor 4, leading thereby to materials forty times stronger than high-quality buckypaper. We believe that these improved fibers can already be potentially useful as functional materials. A simple example of electromechanical actuation is shown.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Saito, R., Dresselhaus, G. and Dresselhaus, M.S., Physical Properties of Carbon Nanotubes, Imperial College Press (1998).Google Scholar
2. Collins, P.G. and Avouris, P., Scientific American 283 (6), 62 (2000).Google Scholar
3. Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C.. Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego 1996).Google Scholar
4. Thess, A. et al., Science 273, 483 (1996).Google Scholar
5. Journet, C. et al., Nature 388, 756 (1997).Google Scholar
6. Rinzler, A.G. et al., Applied Physics A 67, 29 (1998).Google Scholar
7. Baughman, R.H. et al., Science 284, 1340 (1999).Google Scholar
8. Smith, B.W. et al., Applied Physics Letters 77, 663 (2000).Google Scholar
9. Hone, J. et al., Applied Physics Letters 77, 666 (2000).Google Scholar
10. Walters, D.A. et al., Chem. Phys. Lett. 338, 14 (2001).Google Scholar
11. Gommans, H.H. et al., Journal of Applied Physics 88, 2509 (2000).Google Scholar
12. Hwang, J. et al., Phys. Rev. B 62, R13310 (2000).Google Scholar
13. Vigolo, B. et al., Science 290, 1331 (2000).Google Scholar
14. Vigolo, B. et al., Mat. Res. Soc. Symp. Proc. 633, A12.1.1 (2001).Google Scholar
15. Launois, P. et al., Journal of Nanoscience and Nanotechnology 1, 125128 (2001).Google Scholar
16. Everett, D.H., Basic principles of colloid science p 138, 139, 191-201 (Royal Society of Chemistry, London 1988).Google Scholar