Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-24T04:57:03.308Z Has data issue: false hasContentIssue false

Ferromagnetism and Luminescence of Diluted Magnetic Semiconductors GaGdN and AlGdN

Published online by Cambridge University Press:  01 February 2011

Shuichi Emura
Affiliation:
emura@sanken.osaka-u.ac.jpemura.sh@gmail.com, ISIR, United States
Masahiro Takahashi
Affiliation:
taka21@sanken.osaka-u.ac.jp, ISIR, Ibaraki, Japan
Hiroyuki Tambo
Affiliation:
tambo21@sanken.osaka-u.ac.jp, ISIR, Ibaraki, Japan
Akira Suzuki
Affiliation:
a-suzuki@fc.ritsumei.c.jp, Research Organaization of Science and Engineering, Kusatsu, Japan
Tetsuya Nakamura
Affiliation:
naka@spring8.or.jp, SPring-8/JASRI, Sayou, Japan
Yi-Kai Zhou
Affiliation:
zhou21@sanken.osaka-u.ac.jp, ISIR, Ibaraki, Japan
Shigehiko Hasagawa
Affiliation:
hasegawa@sanken.osaka-u.ac.jp, ISIR, Ibaraki, Japan
Hajime Asahi
Affiliation:
asahi@sanken.osaka-u.ac.jp, ISIR, Ibaraki, Japan
Get access

Abstract

The magnetic characteristics of the dilute magnetic system GaGdN are investigated by mainly soft-X-ray magnetic circular dichroism (MCD) in energy range of 1160 – 1240 eV. The strong MCD signals up to 30 % at 15K are observed. The temperature dependence of its intensity is not on simple Curie-Weiss curve and depicts three-step curve. A step around 40 – 100K suggests a new magnetic phase. The luminescence spectrum of GaGdN at low temperature is divided into three parts consisting of two broad bands around 432 nm and 503 nm and a sharp peak at 652 nm. This sharp line is assigned to the intra-transition of f – f orbital owing to the weak temperature dependence of the intensity and peak position. AlGdN grown by molecular beam epitaxy produces luminescence at 318.5 nm. X-ray absorption fine structure is examined to survey the occupancy of the Gd ion in the grown specimens.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Teraguchi, N., Suzuki, A., Nanishi, Y., Zhou, Y.K., Hashimoto, M. and Asahi, H., Solid State Commun. 122, 651653 (2002).Google Scholar
2. Dhar, S., Brandt, O., Rarnsteiner, M., Sapega, V. F., and Ploog, K. H., Phys. Rev. Lett., 94 037205 (2005).Google Scholar
3. Perez, L., Lau, G.S., Dhar, S., Brandt, O., and Ploog, K. H., Phys. Rev, B74, 195207 (2006).Google Scholar
4. Ney, A., Kammermeier, T., Manuel, E., Ney, V., Ploog, K. H., Wilhelm, F., and Rogalev, A., Appl. Phys. Lett., 90, 252515 (2007).Google Scholar
5. Khaderbad, M. A., Dhar, S., Perez, L., Ploog, K.H., Melnikov, A., and Wleck, A. D., Appl. Phys. Lett., 91, 072514 (2007).Google Scholar
6. Liu, L., Yu, Peter Y., Ma, Z., and Mao, Samuel S., Phys. Rev. Lett., 100, 127203 (2008).Google Scholar
7. Gohda, Y. and Oshiyama, A., Phys. Rev. B78, 161201(R) (2008).Google Scholar
8. Teraguchi, N., Suzuk, A., and & Nanishi, Y., Material Science forum 389–393, 1477 (2002).Google Scholar
9. for example, Suski, T., et al, Appl. Phys. Lett., 67 2188 (1995).Google Scholar
10. Dieke, G. H. & Crosswhite, H. M., Applied Optics, 2, 675686 (1963).Google Scholar
11. Aldabergenova, S. B., et al., J. Non-Cryst. Solids, 299–302, 709713 (2002). Tb3 Google Scholar
12. Wakahara, A., et al. The 22nd Electronic Materials Symposium (EMS-22), 227229 (2003). Tb3 Google Scholar