Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T14:15:34.370Z Has data issue: false hasContentIssue false

Femtosecond Spectroscopy of Ferroelectric Perovskites: Explanation of Anomalous Polariton Dynamics in Lithium Tantalate

Published online by Cambridge University Press:  25 February 2011

Gary P. Wiederrecht
Affiliation:
Argonne National Laboratories, Artificial Photosynthesis Division, Argonne, IL 60439
T. P. Dougherty
Affiliation:
NIST, Molecular Physics Division. Bldg 221, rm B268 Gaithersburg, MD 20899
L. Dhar
Affiliation:
Dept. of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
K. A. Nelson
Affiliation:
Dept. of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

Time resolved impulsive stimulated Raman scattering (ISRS) is used to characterize the lowest frequency A1 phonon-polariton mode in lithium tantalate. The anomalously high and wavevector-dependent damping rates observed are explained in terms of coupling of the polariton to a weakly Raman-active relaxational mode and to two heavily damped vibrational modes. The dynamics of the relaxational mode are explored further through temperature dependent ISRS studies. Femtosecond optical pulse shaping is used for multiple pulse ISRS at temperatures lower than 120K where single pulse excitation led to photorefractive damage.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lines, M.E. and Glass, A.M., Principles and Applications of Ferroelectrics and Related Materials, (Clarendon Press, Oxford, 1977).Google Scholar
2. Kaminow, I.P. and Johnston, W.D. Jr., Phys. Rev. 160, 519–22, (1967).Google Scholar
3. Johnston, W.D. Jr., and Kaminow, I.P., Phys. Rev 168, 1045–68, (1968).Google Scholar
4. Barker, A.S. Jr., Ballman, A.A., and Ditzenberger, J.A., Phys. Rev. B 2, 4233, (1970).Google Scholar
5. Glass, A.M. and Lines, M.E., Phys. Rev. B 13, 180–91, (1976).Google Scholar
6. Penna, A.F., Chaves, A., Andrade, P. da R., and Porto, S.P.S., Phys. Rev. B 13, 4907–17, (1976).Google Scholar
7. Jayaraman, A. and Ballman, A.A., J. Appl. Phys. 60, 1208, (1986).Google Scholar
8. Yang, X., Lan, G., Li, B., and Wang, H., Phys. Stat. Solidi B 141, 287, (1987).Google Scholar
9. Raptis, C., Phys. Rev. B 38, 10007, (1988).Google Scholar
10. Auston, D.H. and Nuss, M.C., IEEE J. Quant. Elec. 24, 184, (1988).Google Scholar
11. Nuss, M.C. and Auston, D.H., in Ultrafast Phenomena V, (Springer-Verlag, 1986). p.284.Google Scholar
12. Dougherty, T. P., Wiederrecht, G.P., and Nelson, K.A., J. Opt. Soc. Am. B, accepted.Google Scholar
13. Yan, Y.-X., and Nelson, K.A., J. Chem. Phys. 87, 6240, (1987).Google Scholar
14. Yan, Y.-X., and Nelson, K.A., J. Chem. Phys. 87, 6257, (1987).Google Scholar
15. Yan, Y.-X., Gamble, E.B. Jr., and Nelson, K.A., J. Chem. Phys. 83, 5391, (1985).Google Scholar
16. Etchepare, J., Grillon, G., Antonetti, A., Lolergue, J.C., Fontana, M.D. and Kugel, G.E., in Ultrafast Phenomena VII, Springer-Verlag, Berlin, p.340 (1990).Google Scholar
17. Etchepare, J., Grillon, G., Antonetti, A., Lolergue, J.C., Fontana, M.D. and Kugel, G.E., Phys. Rev. B 41, 12362, (1990).Google Scholar
18. Dougherty, T.P., Wiederrecht, G.P., and Nelson, K.A., Ferroelectrics 120, 79, (1991).Google Scholar
19. Claus, R., Merten, L., Brandmuuller, J., Light Scattering by Phonon-Polaritons, (Springer-Verlag, 1975).Google Scholar
20. Ruhman, S., Joly, A.G., and Nelson, K.A., IEEE J. Quant. Elec. 24, 460, (1988).Google Scholar
21. Dougherty, T.P., Wiederrecht, G.P., and Nelson, K.A., to be published.Google Scholar
22. Weiner, A.M., Leaird, D.E., Wiederrecht, G.P., and Nelson, K.A., Science 247, 1317, (1990).Google Scholar