Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-12T02:12:49.770Z Has data issue: false hasContentIssue false

Femtosecond Nonlinear Transmission Study of Free-Standing Porous Silicon Films

Published online by Cambridge University Press:  15 February 2011

V. Klimov
Affiliation:
Chemical Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, klimov@lanl.gov
D. Mcbranch
Affiliation:
Chemical Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, klimov@lanl.gov
V. Karavanskii
Affiliation:
Institute of General Physics, Vavilov str. 38, 117942 Moscow, Russia
Get access

Abstract

Large photo-induced absorption signals were observed in free standing porous silicon films in the spectral range from 1.1 to 2.5 eV using a femtosecond pump and probe technique. The measured nonlinear signal has a very fast component with relaxation constants from 800 fs to tens of picoseconds superimposed on the slow-relaxing thermal background. The spectral structure and relaxation dynamics of the short-lived component of transient absorption show the presence of molecular-like Si complexes with well defined energy levels and spectrally uniform picosecond relaxation dynamics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, T., Appl. Phys. Lett 57, 1046 (1990).Google Scholar
2. Klimov, V., Dneprovskii, V., and Karavanskii, V., Appl. Phys. Lett. 64, 2691 (1994).Google Scholar
3. Maly, P., Trojanek, F., Hospodkova, A., Kohlova, V., Pelant, I., Solid State, Commun. 89, 709 (1993).Google Scholar
4. Grivickas, V., Linnros, J., Thin Solid Films 255, 70 (1995).Google Scholar
5. Matsumoto, T., Wright, O. B., Futagi, T., Mimura, H., and Kanemitsu, Y., J. Non-Crystalline Solids 164–166, 953 (1993).Google Scholar
6. Matsumoto, T., Hasegawa, N., Tamaki, T., Ueda, K., Futagi, T., Mimura, H., and Kanemitsu, Y., Jpn. J. Appl. Phys. 33, L35 (1994).Google Scholar
7. Calcott, P. D. J., Nash, K. J., Canham, L. T., Kane, M. J., and Brumhead, D., J. Luminescence 57, 257 (1993).Google Scholar
8. Lockwood, D. J., Wang, A., and Bryskiewicz, B., Solid State Commun. 89, 587 (1994).Google Scholar
9. Kovalev, D. I., Yaroshetzkii, I. D., Muschik, T., Petrova-Koch, V., and Koch, F., Appl. Phys. Lett. 64, 214 (1994).Google Scholar
10. Narasimhan, K. L., Banerjee, S., Srivastava, A. K., and Sardesai, A., Appl. Phys. Lett. 62, 331 (1993).Google Scholar
11. Tsybeskov, L. and Fauchet, P. M., Appl. Phys. Lett. 64, 1983 (1994).Google Scholar
12. Sinha, S., Banenjee, S., and Arora, B. M., Phys. Rev. B. 49, 5706 (1994).Google Scholar
13. Koch, F., MRS Proc. 298, 319 (1993).Google Scholar
14. Stuzmann, M., Brandt, M. S., Rosenbauer, M., Fuchs, H. D., Finkbeiner, S., Weber, J., and Deak, P., J. Luminescence 57, 321 (1993).Google Scholar
15. Klimov, V., Hunsche, S., and Kurz, H., phys. stat. sol. (b) 188, 259 (1995).Google Scholar
16. Wonterghem, Van, Saltiel, S. M., Dutton, T. E., and Rentzepis, P. M., J. Appl. Phys. 66, 4935 (1989).Google Scholar