Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T17:07:22.827Z Has data issue: false hasContentIssue false

Fe-Core/Au-Shell Nanoparticles: Growth Mechanisms, Oxidation and Aging Effects

Published online by Cambridge University Press:  26 February 2011

Kai Liu
Affiliation:
kailiu@ucdavis.edu, University of California - Davis, Physics Department, One Shields Avenue, Davis, CA, 95616, United States, 530-752-4109, 530-752-4717
Sung-Jin Cho
Affiliation:
sjcho@ucdavis.edu, University of California - Davis, Chemistry Department, United States
Susan M. Kauzlarich
Affiliation:
smkauzlarich@ucdavis.edu, University of California - Davis, Chemistry Department, United States
J. C. Idrobo
Affiliation:
jidrob1@uic.edu, University of California - Davis, Physics Department, United States
Joseph E. Davies
Affiliation:
Davies@physics.ucdavis.edu, University of California - Davis, Physics Department, United States
Justin Olamit
Affiliation:
Olamit@physics.ucdavis.edu, University of California - Davis, Physics Department, United States
N. D. Browning
Affiliation:
Nbrowning@ucdavis.edu, University of California - Davis, Department of Chemical Engineering and Materials Science, United States
Ahmed M. Shahin
Affiliation:
ashahin@ucalgary.ca, University of Missouri - Rolla, Chemistry Department, United States
Gary J. Long
Affiliation:
glong@umr.edu, University of Missouri - Rolla, Chemistry Department, United States
Fernande Grandjean
Affiliation:
fgrandjean@ulg.ac.be, University of Liëge, Physics Department, Belgium
Get access

Abstract

We report the chemical synthesis of Fe-core/Au-shell nanoparticles (Fe/Au) by a reverse micelle method, and the investigation of their growth mechanisms and oxidation-resistant characteristics. The core-shell structure and the presence of the Fe and Au phases have been confirmed by transmission electron microscopy, energy dispersive spectroscopy, x-ray diffraction, Mössbauer spectroscopy, and inductively coupled plasma techniques. Additionally, atomic-resolution Z-contrast imaging and electron energy loss spectroscopy in a scanning transmission electron microscope have been used to study details of the growth processes. The Au-shells grow by nucleating on the Fe-core surfaces before coalescing. First-order reversal curves, along with the major hysteresis loops of the Fe/Au nanoparticles have been measured as a function of time in order to investigate the evolution of their magnetic properties. The magnetic moments of such nanoparticles, in the loose powder form, decrease over time due to oxidation. The less than ideal oxidation-resistance of the Au shell may have been caused by the rough Au surfaces. In a small fraction of the particles, off-centered Fe cores have been observed, which are more susceptible to oxidation. However, in the pressed pellet form, electrical transport measurements show that the particles are fairly stable, as the resistance and magnetoresistance of the pellet do not change appreciably over time. Our results demonstrate the complexity involved in the synthesis and properties of these heterostructured nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Awschalom, D. D. and von Molnár, S., in Nanotechnology (Chapter 12), edited by Timp, G. (Springer-Verlag, New York, 1998).Google Scholar
2 Ounadjela, K. and Stamps, R. L., in Handbook of Nanostructured Materials and Nanotechnology (Chapter 9), edited by Nalwa, H. S. (Academic Press, San Diego, 2000), Vol. 2.Google Scholar
3 Ross, C., An. Rev. Mater. Res. 31, 203 (2001).Google Scholar
4 Martin, J. I., Nogues, J., Liu, K., Vicent, J. L., and Schuller, I. K., Magn, J.. Magn. Mater. 256, 449 (2003).Google Scholar
5 Kim, D. K., Zhang, Y., Kehr, J., Klason, T., Bjelke, B., and Muhammed, M., Magn, J.. Magn. Mater. 225, 256 (2001).Google Scholar
6 Niemeyer, C. M., Angewandte Chemie, Int. Ed. 40, 4128 (2001).Google Scholar
7 Li, G. X. and Wang, S. X., IEEE Trans. Magn. 39, 3313 (2003).Google Scholar
8 Li, G. X., Wang, S. X., and Sun, S. H., IEEE Trans. Magn. 40, 3000 (2004).Google Scholar
9 Bausch, A. R., Moller, W., and Sackmann, E., Biophys. J. 76, 573 (1999).Google Scholar
10 Mornet, S., Vasseur, S., Grasset, F., and Duguet, E., J. Mater. Chem. 14, 2161 (2004).Google Scholar
11 Gangopadhyay, P., Gallet, S., Franz, E., Persoons, A., and Verbiest, T., IEEE Trans. Magn. 41, 4194 (2005).Google Scholar
12 Zahn, M., J. Nanopar. Res. 3, 73 (2001).Google Scholar
13 O'Connor, C. J., Seip, C., Sangregorio, C., Carpenter, E., Li, S., Irvin, G., and John, V. T., Mole. Crys. Liq. Crys. Sci. Tech. A 335, 1135 (1999).Google Scholar
14 Wang, D., He, J., Rosenzweig, N., and Rosenzweig, Z., Nano Lett. 4, 409 (2004).Google Scholar
15 Sun, S. and Zeng, H., J. Am. Chem. Soc. 124, 8204 (2002).Google Scholar
16 Kuhn, L. T., Bojesen, A., Timmermann, L., Nielsen, M. M., and Morup, S., J. Phys.: Cond. Mat. 14, 13551 (2002).Google Scholar
17 Sun, S. H., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X., and Li, G. X., J. Am. Chem. Soc. 126, 273 (2004).Google Scholar
18 Puntes, V. F., Krishnan, K. M., and Alivisatos, A. P., Science 291, 2115 (2001).Google Scholar
19 Park, S.-J., Kim, S., Lee, S., Khim, Z. G., Char, K., and Hyeon, T., J. Am. Chem. Soc. 122, 8581 (2000).Google Scholar
20 Dumestre, F., Chaudret, B., Amiens, C., Renaud, P., and Fejes, P., Science 303, 821 (2004).Google Scholar
21 Bai, J. and Wang, J.-P., Appl. Phys. Lett. 87, 152502 (2005).Google Scholar
22 Carpenter, E. E., Sangregorio, C., and O'Connor, C. J., IEEE Trans. Magn. 35, 3496 (1999).Google Scholar
23 Kinoshita, T., Seino, S., Okitsu, K., Nakayama, T., Nakagawa, T., and Yamamoto, T. A., J. Alloy. Comp. 359, 46 (2003).Google Scholar
24 Ravel, B., Carpenter, E. E., and Harris, V. G., J. Appl. Phys. 91, 8195 (2002).Google Scholar
25 Carpenter, E. E., J. Magn. Magn. Mater. 225, 17 (2001).Google Scholar
26 O'Connor, C. J., Kolesnichenko, V., Carpenter, E., Sangregorio, C., Zhou, W., Kumbhar, A., Sims, J., and Agnoli, F., Synth. Met. 122, 547 (2001).Google Scholar
27 Lin, J., Zhou, W., Kumbhar, A., Wiemann, J., Fang, J., Carpenter, E. E., and O'Connor, C. J., J. Solid St. Chem. 159, 26 (2001).Google Scholar
28 Cho, S.-J., Kauzlarich, S. M., Olamit, J., Liu, K., Grandjean, F., Rebbouh, L., and Long, G. J., J. Appl. Phys. 95, 6804 (2004).Google Scholar
29 Cho, S.-J., Idrobo, J.-C., Olamit, J., Liu, K., Browning, N. D., and Kauzlarich, S. M., Chem. Mater. 17, 3181 (2005).Google Scholar
30 Cho, S.-J., Shahin, A. M., Long, G. J., Davies, J. E., Liu, K., Grandjean, F., and Kauzlarich, S. M., Chem. Mater., in press (2006); cond-mat/0512413.Google Scholar
31 Pham, T., Jackson, J. B., Halas, N. J., and Lee, T. R., Langmuir 18, 4915 (2002).Google Scholar
32 Egerton, R. F., Electron Energy-Loss Spectroscopy in The Electron Microscope, 1986).Google Scholar
33 Liu, K., Zhao, L., Klavins, P., Osterloh, F. E., and Hiramatsu, H., Appl, J.. Phys. 93, 7951 (2003).Google Scholar
34 Pike, C. R., Roberts, A., and Verosub, K. L., J. Appl. Phys 85, 6660 (1999).Google Scholar
35 Katzgraber, H. G., Pázmándi, F., Pike, C. R., Liu, K., Scalettar, R. T., Verosub, K. L., and Zimányi, G. T., Phys. Rev. Lett. 89, 257202 (2002).Google Scholar
36 Davies, J. E., Hellwig, O., Fullerton, E. E., Denbeaux, G., Kortright, J. B., and Liu, K., Phys. Rev. B 70, 224434 (2004).Google Scholar
37 Davies, J. E., Hellwig, O., Fullerton, E. E., Jiang, J. S., Bader, S. D., Zimanyi, G. T., and Liu, K., Appl. Phys. Lett. 86, 262503 (2005).Google Scholar
38 Davies, J. E., Wu, J., Leighton, C., and Liu, K., Phys. Rev. B 72, 134419 (2005).Google Scholar
39 Cullity, B. D., Intorduction to magnetic materials (Addison-Wesley Pub. Co., Reading, Mass., 1972).Google Scholar
40 Liu, K. and Chien, C. L., IEEE Trans. Magn. 34, 1021 (1998).Google Scholar
41 Long, G. J., Hautot, D., Pankhurst, Q. A., Vandormael, D., Grandjean, F., Gaspard, J. P., Briois, V., Hyeon, T., and Suslick, K. S., Phys. Rev. B 57, 10716 (1998).Google Scholar
42 Novakova, A. A., Lanchinskaya, V. Y., Volkov, A. V., Gendler, T. S., Kiseleva, T. Y., Moskvina, M. A., and Zezin, S. B., J. Magn. Magn. Mater. 258–259, 354 (2003).Google Scholar
43 Glavee, G. N., Klabunde, K. J., Sorensen, C. M., and Hadjipanayis, G. C., Inorg. Chem. 34, 28 (1995).Google Scholar
44 Duxin, N., Stephan, O., Petit, C., Bonville, P., Colliex, C., and Pileni, M. P., Chem. Mater. 9, 2096 (1997).Google Scholar
45 Linderoth, S. and Mørup, S., J. Appl. Phys. 69, 5256 (1991).Google Scholar
46 Savini, L., Bonetti, E., Del Bianco, L., Pasquini, L., Signorini, L., Coisson, M., and Selvaggini, V., J. Magn. Magn. Mater. 262, 56 (2003).Google Scholar
47 Xiao, J. Q., Jiang, J. S., and Chien, C. L., Phys. Rev. Lett. 68, 3749 (1992).Google Scholar