Skip to main content Accessibility help
×
Home

Fe-Core/Au-Shell Nanoparticles: Growth Mechanisms, Oxidation and Aging Effects

  • Kai Liu (a1), Sung-Jin Cho (a2), Susan M. Kauzlarich (a3), J. C. Idrobo (a4), Joseph E. Davies (a5), Justin Olamit (a6), N. D. Browning (a7), Ahmed M. Shahin (a8), Gary J. Long (a9) and Fernande Grandjean (a10)...

Abstract

We report the chemical synthesis of Fe-core/Au-shell nanoparticles (Fe/Au) by a reverse micelle method, and the investigation of their growth mechanisms and oxidation-resistant characteristics. The core-shell structure and the presence of the Fe and Au phases have been confirmed by transmission electron microscopy, energy dispersive spectroscopy, x-ray diffraction, Mössbauer spectroscopy, and inductively coupled plasma techniques. Additionally, atomic-resolution Z-contrast imaging and electron energy loss spectroscopy in a scanning transmission electron microscope have been used to study details of the growth processes. The Au-shells grow by nucleating on the Fe-core surfaces before coalescing. First-order reversal curves, along with the major hysteresis loops of the Fe/Au nanoparticles have been measured as a function of time in order to investigate the evolution of their magnetic properties. The magnetic moments of such nanoparticles, in the loose powder form, decrease over time due to oxidation. The less than ideal oxidation-resistance of the Au shell may have been caused by the rough Au surfaces. In a small fraction of the particles, off-centered Fe cores have been observed, which are more susceptible to oxidation. However, in the pressed pellet form, electrical transport measurements show that the particles are fairly stable, as the resistance and magnetoresistance of the pellet do not change appreciably over time. Our results demonstrate the complexity involved in the synthesis and properties of these heterostructured nanoparticles.

Copyright

References

Hide All
1 Awschalom, D. D. and von Molnár, S., in Nanotechnology (Chapter 12), edited by Timp, G. (Springer-Verlag, New York, 1998).
2 Ounadjela, K. and Stamps, R. L., in Handbook of Nanostructured Materials and Nanotechnology (Chapter 9), edited by Nalwa, H. S. (Academic Press, San Diego, 2000), Vol. 2.
3 Ross, C., An. Rev. Mater. Res. 31, 203 (2001).
4 Martin, J. I., Nogues, J., Liu, K., Vicent, J. L., and Schuller, I. K., Magn, J.. Magn. Mater. 256, 449 (2003).
5 Kim, D. K., Zhang, Y., Kehr, J., Klason, T., Bjelke, B., and Muhammed, M., Magn, J.. Magn. Mater. 225, 256 (2001).
6 Niemeyer, C. M., Angewandte Chemie, Int. Ed. 40, 4128 (2001).
7 Li, G. X. and Wang, S. X., IEEE Trans. Magn. 39, 3313 (2003).
8 Li, G. X., Wang, S. X., and Sun, S. H., IEEE Trans. Magn. 40, 3000 (2004).
9 Bausch, A. R., Moller, W., and Sackmann, E., Biophys. J. 76, 573 (1999).
10 Mornet, S., Vasseur, S., Grasset, F., and Duguet, E., J. Mater. Chem. 14, 2161 (2004).
11 Gangopadhyay, P., Gallet, S., Franz, E., Persoons, A., and Verbiest, T., IEEE Trans. Magn. 41, 4194 (2005).
12 Zahn, M., J. Nanopar. Res. 3, 73 (2001).
13 O'Connor, C. J., Seip, C., Sangregorio, C., Carpenter, E., Li, S., Irvin, G., and John, V. T., Mole. Crys. Liq. Crys. Sci. Tech. A 335, 1135 (1999).
14 Wang, D., He, J., Rosenzweig, N., and Rosenzweig, Z., Nano Lett. 4, 409 (2004).
15 Sun, S. and Zeng, H., J. Am. Chem. Soc. 124, 8204 (2002).
16 Kuhn, L. T., Bojesen, A., Timmermann, L., Nielsen, M. M., and Morup, S., J. Phys.: Cond. Mat. 14, 13551 (2002).
17 Sun, S. H., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X., and Li, G. X., J. Am. Chem. Soc. 126, 273 (2004).
18 Puntes, V. F., Krishnan, K. M., and Alivisatos, A. P., Science 291, 2115 (2001).
19 Park, S.-J., Kim, S., Lee, S., Khim, Z. G., Char, K., and Hyeon, T., J. Am. Chem. Soc. 122, 8581 (2000).
20 Dumestre, F., Chaudret, B., Amiens, C., Renaud, P., and Fejes, P., Science 303, 821 (2004).
21 Bai, J. and Wang, J.-P., Appl. Phys. Lett. 87, 152502 (2005).
22 Carpenter, E. E., Sangregorio, C., and O'Connor, C. J., IEEE Trans. Magn. 35, 3496 (1999).
23 Kinoshita, T., Seino, S., Okitsu, K., Nakayama, T., Nakagawa, T., and Yamamoto, T. A., J. Alloy. Comp. 359, 46 (2003).
24 Ravel, B., Carpenter, E. E., and Harris, V. G., J. Appl. Phys. 91, 8195 (2002).
25 Carpenter, E. E., J. Magn. Magn. Mater. 225, 17 (2001).
26 O'Connor, C. J., Kolesnichenko, V., Carpenter, E., Sangregorio, C., Zhou, W., Kumbhar, A., Sims, J., and Agnoli, F., Synth. Met. 122, 547 (2001).
27 Lin, J., Zhou, W., Kumbhar, A., Wiemann, J., Fang, J., Carpenter, E. E., and O'Connor, C. J., J. Solid St. Chem. 159, 26 (2001).
28 Cho, S.-J., Kauzlarich, S. M., Olamit, J., Liu, K., Grandjean, F., Rebbouh, L., and Long, G. J., J. Appl. Phys. 95, 6804 (2004).
29 Cho, S.-J., Idrobo, J.-C., Olamit, J., Liu, K., Browning, N. D., and Kauzlarich, S. M., Chem. Mater. 17, 3181 (2005).
30 Cho, S.-J., Shahin, A. M., Long, G. J., Davies, J. E., Liu, K., Grandjean, F., and Kauzlarich, S. M., Chem. Mater., in press (2006); cond-mat/0512413.
31 Pham, T., Jackson, J. B., Halas, N. J., and Lee, T. R., Langmuir 18, 4915 (2002).
32 Egerton, R. F., Electron Energy-Loss Spectroscopy in The Electron Microscope, 1986).
33 Liu, K., Zhao, L., Klavins, P., Osterloh, F. E., and Hiramatsu, H., Appl, J.. Phys. 93, 7951 (2003).
34 Pike, C. R., Roberts, A., and Verosub, K. L., J. Appl. Phys 85, 6660 (1999).
35 Katzgraber, H. G., Pázmándi, F., Pike, C. R., Liu, K., Scalettar, R. T., Verosub, K. L., and Zimányi, G. T., Phys. Rev. Lett. 89, 257202 (2002).
36 Davies, J. E., Hellwig, O., Fullerton, E. E., Denbeaux, G., Kortright, J. B., and Liu, K., Phys. Rev. B 70, 224434 (2004).
37 Davies, J. E., Hellwig, O., Fullerton, E. E., Jiang, J. S., Bader, S. D., Zimanyi, G. T., and Liu, K., Appl. Phys. Lett. 86, 262503 (2005).
38 Davies, J. E., Wu, J., Leighton, C., and Liu, K., Phys. Rev. B 72, 134419 (2005).
39 Cullity, B. D., Intorduction to magnetic materials (Addison-Wesley Pub. Co., Reading, Mass., 1972).
40 Liu, K. and Chien, C. L., IEEE Trans. Magn. 34, 1021 (1998).
41 Long, G. J., Hautot, D., Pankhurst, Q. A., Vandormael, D., Grandjean, F., Gaspard, J. P., Briois, V., Hyeon, T., and Suslick, K. S., Phys. Rev. B 57, 10716 (1998).
42 Novakova, A. A., Lanchinskaya, V. Y., Volkov, A. V., Gendler, T. S., Kiseleva, T. Y., Moskvina, M. A., and Zezin, S. B., J. Magn. Magn. Mater. 258–259, 354 (2003).
43 Glavee, G. N., Klabunde, K. J., Sorensen, C. M., and Hadjipanayis, G. C., Inorg. Chem. 34, 28 (1995).
44 Duxin, N., Stephan, O., Petit, C., Bonville, P., Colliex, C., and Pileni, M. P., Chem. Mater. 9, 2096 (1997).
45 Linderoth, S. and Mørup, S., J. Appl. Phys. 69, 5256 (1991).
46 Savini, L., Bonetti, E., Del Bianco, L., Pasquini, L., Signorini, L., Coisson, M., and Selvaggini, V., J. Magn. Magn. Mater. 262, 56 (2003).
47 Xiao, J. Q., Jiang, J. S., and Chien, C. L., Phys. Rev. Lett. 68, 3749 (1992).

Keywords

Fe-Core/Au-Shell Nanoparticles: Growth Mechanisms, Oxidation and Aging Effects

  • Kai Liu (a1), Sung-Jin Cho (a2), Susan M. Kauzlarich (a3), J. C. Idrobo (a4), Joseph E. Davies (a5), Justin Olamit (a6), N. D. Browning (a7), Ahmed M. Shahin (a8), Gary J. Long (a9) and Fernande Grandjean (a10)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed