Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-08T04:33:18.907Z Has data issue: false hasContentIssue false

Fast Deposition of Microcrystalline Silicon Films Using The High-Density Microwave Plasma Utilizing a Spokewise Antenna

Published online by Cambridge University Press:  17 March 2011

H. Shirai
Affiliation:
Department of Functional Materials Science, Faculty of Engineering, Saitama University, 255 Shimo-Okubo, Urawa, Saitama 338-8570, Japan
Y. Sakuma
Affiliation:
Department of Functional Materials Science, Faculty of Engineering, Saitama University, 255 Shimo-Okubo, Urawa, Saitama 338-8570, Japan
K. Yoshino
Affiliation:
Department of Functional Materials Science, Faculty of Engineering, Saitama University, 255 Shimo-Okubo, Urawa, Saitama 338-8570, Japan
H. Ueyama
Affiliation:
Nihon Koshuha Co., Ltd. 1119 Nakayama, Midori-ku, Yokohama, 226-0011, Japan
Get access

Abstract

The high-density and low temperature microwave plasma utilizing a spokewise antenna was successfully applied to fast deposition of highly crystallized and photconductive microcrystalline silicon (μ-Si:H) films at low temperatures. The deposition rate and film crytstallinity significantly depend on the axial distribution of the plasma parameters. Best crystallinity was obtained at the axial distance Z from the quartz glass plate, where the spread of the ion beam energy impinging to the growing surface was minimum. By optimizing the axial distance Z and total pressure, highly crystallized μ-Si:H films could be fabricated with a high deposition rate of ∼47Å/s in the SiH4 and Ar mixture plasma with no use of the H2 dilution. An intentional control of the ion beam energy is also attempted using a mesh grid electrode to suppress the ion bombardment to the growing surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Watanabe, T., Tanaka, M., Azuma, K., Nakatani, M., Sonobe, T. and Shimada, T., Jpn. J. Appl. Phys., 26 (1987) L288.Google Scholar
[2] Matsumoto, Y., Hirata, G., Takakura, H., H. Okamoto and Hamakawa, H., J. Appl. Phys., 67 (1990) 6538.Google Scholar
[3] Goto, M., Toyoda, H., Kojima, T., Nishitani, M., Kitagawa, M., Yamazoe, H. and Sugai, H., Jpn. J. Appl. Phys., 38 (1999) 3655.Google Scholar
[4] Goto, M., Toyoda, M., Kitagawa, M., Hirao, T. and Sugai, H., Jpn. J. Appl. Phys., (1997) 3714.Google Scholar
[5] Yoshida, R., Sumiya, S., Mebarki, B., Ito, M., Hori, M., Goto, T., Samukawa, S. and Tsukada, T., Proc of Dry process Symp. 1998 (IEEE of Japan) p 73.Google Scholar
[6] Shirai, H., Arai, T. and Ueyama, H., Jpn. J. Appl. Phys., 37 (1998) 1078.Google Scholar
[7] Ohtsu, Y., Mori, K. and Fujita, H., Jpn. J. Appl. Phys., 38 (1999) 4393.Google Scholar
[8] Kato, K., Iizuka, S., Ganguly, G., Ikeda, T., Matsuda, A. and Sato, N., Jpn. J. Appl. Phys., 36 (1997) 4547.Google Scholar
[9] Shirai, H., Sakuma, Y., Moriya, Y., Fukai, C. and Ueyama, H., Jpn. J. Appl. Phys., 38 (1999) 6629.Google Scholar