Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-24T02:25:23.706Z Has data issue: false hasContentIssue false

Fabrication of Smooth GaN-Based Laser Facets

Published online by Cambridge University Press:  15 February 2011

D. A. Stocker
Affiliation:
Center for Photonics Research, Boston University, Boston, MA 02215
E. F. Schubert
Affiliation:
Center for Photonics Research, Boston University, Boston, MA 02215
K. S. Boutros
Affiliation:
Epitronics, Phoenix, AZ 85027
J. M. Redwing
Affiliation:
Epitronics, Phoenix, AZ 85027
Get access

Abstract

A method is presented for fabricating fully wet-etched InGaN/GaN laser cavities using photoenhanced electrochemical wet etching followed by crystallographic wet etching. Crystallographic wet chemical etching of n- and p-type GaN grown on c-plane sapphire is achieved using H3PO4 and various hydroxides, with etch rates as high as 3.2 μm/min. The crystallographic GaN etch planes are {0001}, {1010}, {1011}, {1012}, and {1013}. The vertical {1010} planes appear perfectly smooth when viewed with a field-effect scanning electron microscope (FESEM), indicating a surface roughness less than 5 nm, suitable for laser facets. The etch rate and crystallographic nature for the various etching solutions are independent of conductivity, as shown by seamless etching of a p-GaN/undoped, high-resistivity GaN homojunction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Zolper, J. C. and Shul, R. J., MRS Bulletin 22 (2), 36 (1997).Google Scholar
2 Gillis, H. P. Ghoutov, D. A., and Martin, K. P., JOM 48 (8), 50 (1996).Google Scholar
3 Ren, F., Lothian, J. R., Pearton, S. J., Abernathy, G. R., Vartuli, G. B., MacKenzie, J. D., Wilson, R. G., and Karlicek, R.F., Journal of Electronic Materials 26, 1287 (1997).Google Scholar
4 Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T.. Kiyoku, H., Sugimoto, Y., Jpn. J. Appi. Phys. 35, L74 (1996).Google Scholar
5 Binet, F., Duboz, J. Y., Laurent, N., Bonnat, G., Collot, P., Hanauer, F., Briot, O., Aulombard, R. L., Appl. Phys. Lett. 72, 960 (1998).Google Scholar
6 Kneissl, M., Bour, D. P., Johnson, N. M., Romano, L. T., Krusor, B. S., Donaldson, R., Walker, J., Dunnrowicz, G., Appl. Phys. Lett. 72, 1539 (1998).Google Scholar
7 Minsky, M.S., White, M., and Hu, E.L., Appl. Phys. Lett. 68, 1531 (1996).Google Scholar
8 Peng, L.-H., Ghuang, C.-W., Ho, J.-K., Huang, G.-N., and Chen, G.-Y., Appl. Phys. Lett. 72, 939 (1998).Google Scholar
9 Lu, H., Wu, Z., and Bhat, I., J. Electrochem. Soc. 144, L8 (1997).Google Scholar
10 Youtsey, G., Adesida, I., Romano, L. T., and Bulman, G., Appl. Phys. Lett. 72, 560 (1998).Google Scholar
11 Stocker, D. A., Schubert, E. F., and Redwing, J. M., Appl. Phys. Lett. 73, 2654 (1998).Google Scholar
12 Seelmann-Eggebert, M., Weyher, J. L., Obloh, H., Zimmermann, H., Rar, A., and Porowski, S., Appl. Phys. Lett. 71, 2635 (1997).Google Scholar
13 Vartuli, G. B., Pearton, S. J., Abernathy, G. R., MacKenzie, J. D., Ren, F., Zolper, J. G., and Shul, R. J., Solid-State Electronics 41, 1947 (1997).Google Scholar
14 Shintani, A. and Minagawa, S., J. Electrochem. Soc. 123, 706 (1976).Google Scholar
15 Kozawa, T., Kachi, T., Ohwaki, T., Taga, Y., Koide, N., Koike, M., J. Electrochem. Soc. 143, L17 (1996).Google Scholar
16 Stocker, D. A., Schubert, E. F., Grieshaber, W., Boutros, K. S., and Redwing, J. M., Appl. Phys. Lett. 73, 1925 (1998).Google Scholar
17 Stocker, D. A., Schubert, E. F., Boutros, K. S., Flynn, J. S., Vaudo, R. P., Phanse, V. M., and Redwing, J. M., Electron. Lett. 34, 373 (1998).Google Scholar