Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-23T02:16:28.275Z Has data issue: false hasContentIssue false

Fabrication Of Organic Dye-Coated High-Tc Superconductor Optical Devices: Interface Chemistry And Properties

Published online by Cambridge University Press:  16 February 2011

David Jurbergs
Affiliation:
The University Of Texas At Austin, Department Of Chemistry And Biochemistry, Austin, Tx 78712
Jianai Zhao
Affiliation:
The University Of Texas At Austin, Department Of Chemistry And Biochemistry, Austin, Tx 78712
Steven G. Haupt
Affiliation:
The University Of Texas At Austin, Department Of Chemistry And Biochemistry, Austin, Tx 78712
John T. Mcdevitt
Affiliation:
The University Of Texas At Austin, Department Of Chemistry And Biochemistry, Austin, Tx 78712
Get access

Abstract

The preparation and characterization of a new generation of optical sensors fabricated from high-temperature superconductor (HTSC) thin films is reported herein. These new hybrid devices are prepared using HTSC thin films which are coated with organic dye overlayers. These systems have been shown to respond selectively to those wavelengths which are absorbed strongly by the molecular dye. Methods for fabricating the superconductor element and depositing the dye layer are discussed. Moreover, scanning electron microscopy and resistivity versus temperature measurements are utilized to characterize these hybrid structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sheppard, L.M., Am. Ceramic Soc. Bulletin 71 (8), 2442 (1992).Google Scholar
2. Missert, N., Harvey, T.E., Ono, R.H., and Reintsema, C.D., Appl. Phys. Lett. 63 (12), 1690 (1993).Google Scholar
3. Brasunas, J.C., Moseley, S.H., Lakew, B., Ono, R.H., McDonald, D.G., Beali, J.A., and Sauvaguea, J.E, J. Appl. Phys. 66 (9), 4551 (1989).CrossRefGoogle Scholar
4. Martens, J.S., Pance, A., Char, K., Lee, L., Whiteley, S., and Hietala, V.M., Appl. Phys. Lett. 63 (10), 1681 (1993).Google Scholar
5. McDevitt, J.T., Riley, D.R., and Haupt, S.G., Anal. Chem. 65, 535A (1993).CrossRefGoogle Scholar
6. Zhao, J., Jurbergs, D., Yamazi, B., and McDevitt, J.T., J. Am. Chem. Soc. 114, 2737 (1992).Google Scholar
7. Haupt, S.G., Riley, D.R., Jones, C.T., Zhao, J., and McDevitt, J.T., J. Am. Chem. Soc. 115, 1196 (1993).CrossRefGoogle Scholar
8. Enomoto, Y. and Murakami, T., J. Appl. Phys. 56, 3807 (1986).CrossRefGoogle Scholar
9. Kwok, H.S., Zheng, J.P., and Ying, Q.Y., Appl. Phys. Lett. 54, 2473 (1989).Google Scholar
10. Riley, D.R., Jurbergs, D., Zhou, J-P., Zhao, J., Markert, J.T., and McDevitt, J.T., Solid State Comm. 88, 431 (1993).Google Scholar
11. Zhou, J-P., Riley, D.R., Manthiram, A., and McDevitt, J.T., Appl. Phys. Lett. 63, 548 (1993).CrossRefGoogle Scholar
12. Dijkkamp, D., Appl. Phys. Lett. 51, 619 (1987).Google Scholar
13. Char, K., Appl. Phys. Lett. 56, 785 (1990).Google Scholar
14. Vase, P., Yueqiang, S., Freltoft, T., Appl. Surf. Sci. 46, 61 (1990).Google Scholar
15. Loutfy, R.O., Hor, A-M., Hsiao, C-K., Baranyi, G., and Kazmaier, P., Pure Appl. Chem. 60 (7), 1047 (1988).Google Scholar
16. Moser, F.H. and Thomas, A.L., Phthalocyanine Compounds (Reinhold Publishing Corporation, New York, 1963), pp. 2938, 167, 192.Google Scholar
17. Poole, C.P. Jr, Datta, T., and Farach, H.A., Copper Oxide Superconductors (John Wiley & Sons, Inc., New York, 1988), p. 110.Google Scholar