Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-28T06:50:18.107Z Has data issue: false hasContentIssue false

Fabrication of Ion-Paths for Ionic Liquid Type Quasi-Solid Dye Sensitized Solar Cell

Published online by Cambridge University Press:  26 February 2011

Takashi Kado
Affiliation:
kado-takashi@edu.life.kyutech.ac.jp, Kyushu Institute of Technology, Graduate School of Life Science and Systems Engineering, 2-4 Hibikino Wakamatsu-ku, Kitakyushu, 808-0196, Japan
Takehito Kato
Affiliation:
katoh-takehito@edu.life.kyutech.ac.jp, Kyushu Institute of Technology, Graduate School of Life Science and Systems Engineering, 2-4 Hibikino Wakamatsu-ku, Kitakyushu, 808-0196, Japan
Takeshi kogo
Affiliation:
kougo-takeshi@edu.life.kyutech.ac.jp, Kyushu Institute of Technology, Graduate School of Life Science and Systems Engineering, 2-4 Hibikino Wakamatsu-ku, Kitakyushu, 808-0196, Japan
Fumi Inakazu
Affiliation:
inakazu-fumi@edu.life.kyutech.ac.jp, Kyushu Institute of Technology, Graduate School of Life Science and Systems Engineering, 2-4 Hibikino Wakamatsu-ku, Kitakyushu, 808-0196, Japan
Yusuke Noma
Affiliation:
noma-yusuke@edu.life.kyutech.ac.jp, Kyushu Institute of Technology, Graduate School of Life Science and Systems Engineering, 2-4 Hibikino Wakamatsu-ku, Kitakyushu, 808-0196, Japan
Yuhei Ogomi
Affiliation:
ogomi-yuhei@edu.life.kyutech.ac.jp, Kyushu Institute of Technology, Graduate School of Life Science and Systems Engineering, 2-4 Hibikino Wakamatsu-ku, Kitakyushu, 808-0196, Japan
Yoshihiro Yamaguchi
Affiliation:
yamaguys@nscc.co.jp, Shin-nippon steel chemical co. Ltd., Kitakyushu, 804-8503, Japan
Mitsuru Kohno
Affiliation:
kohnomi@nscc.co.jp, Shin-nippon steel chemical co. Ltd., Kitakyushu, 804-8503, Japan
Shuzi Hayase
Affiliation:
hayase@life.kyutech.ac.jp, Kyushu Institute of Technology, Graduate School of Life Science and Systems Engineering, 2-4 Hibikino Wakamatsu-ku, Kitakyushu, 808-0196, Japan
Get access

Abstract

A direction to increasing photovoltaic performances of dye sensitized solar cells (DSC) is proposed. An interface between TiO2/dye and an electrolyte layer is focused on. It is proved that better coverage of TiO2 layers with dye molecules increases photovoltaic performances, where dye staining is carried out in pressurized CO2 atmosphere. This is explained by decreases in the amount of surface traps on TiO2 nano-particles, which is discussed by thermally stimulated current (TSC). The decrease in the surface trap density increases electron diffusion coefficient and improves electron lifetime in TiO2 layers. In addition, the TiO2-staining with dye molecules having the larger dipole moment seems to leave less amount of electron trap. Another crucial research item is solidification. Quasi-solidification is carried out by using surface modified anodically-oxidized Al2O3 films filled with ionic liquids, where ion paths are fabricated on the surface-modified Al2O3 walls by concentrating iodine and iodide molecules on the walls. Because of the fabrication of the ion path, photovoltaic performances increased even after solidification. Grötthuss type mechanism is introduced to explain the increase in the photovoltaic performances after the solidification.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Regan, B. O, and Gratzel, M., Nature, 353, 737(1991).Google Scholar
2. Nazeerudin, M. K., Pechy, P., Renouard, T., Zakeeruddin, S. M., Humphry, B., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G. B., Bignozzi, C. A. and Gatzel, M., J. Am. Chem. Soc., 123, 1613 (2001).Google Scholar
3. Wang, Z. S., Yamaguchi, T., Sugihara, H., Arakawa, H., Langmuir, 21, 4272 (2005).Google Scholar
4. Nazeeruddin, M. K., De Angelis, F., Fantacci, S., Selloni, A., Viscardi, G., Liska, O., Ito, S., Takeru, B. and Gätzel, M., J. Am. Chem. Soc., 127, 16835(2005).Google Scholar
5. NEDO homepage, http://www.nedo.go.jp/informations/other/161005_1/gaiyou_j.pdfGoogle Scholar
6. Hagfeldt, and Graetzel, M., Chem. Rev., 95, 347(1995).Google Scholar
7. Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G. B., Bignozzi, C. A., Grätzel, M., J. Am. Chem. Soc., 123, 1613(2001).Google Scholar
8. Wang, P., Zakeeruddin, S. M., Moser, J. E., Nhzeeruddin, M. K., Sekiguchi, T. and Graetzel, M., Nature Materials, 2, 402(2002).Google Scholar
9. Matsui, H., Okada, K., Tanabe, N., Kawano, R., Watanabe, M., Trans. Mater. Res. Soc. Jpn., 29, 1017(2004).Google Scholar
10. Usui, H., Matsui, H., Tanabe, N., and Yanagida, S., J. Photochem. Photobiol. A: Chem., 164, 97(2004).Google Scholar
11. Matsui, H., Okada, K., Kawashima, T., Ezure, T., Tanabe, N., Kawano, R., Watanabe, M., J. Photochem. Photobiol. A: Chem., 164, 129(2004).Google Scholar
12. Okada, K., Matsui, H.,. Kawashima, T., Ezure, T., and Tanabe, N., J. Photochem. Photobiol. A: Chem., 164, 193(2004).Google Scholar
13. Kay, A.. Graetzel, M., Chem. Mater., 14, 2930(2002).Google Scholar
14. Tennakone, K, Senadeera, G. K. R., Perera, V. P. S., Kottegoda, I. R. M., and De Silva, L. A. A., Chem. Mater., 11 2474(1999).Google Scholar
15. Perera, V. P. S. and Tennakone, K., Solar Energy Mater. Solar Cells, 79, 249(2003).Google Scholar
16. Sirimanne, P. M. and Tributsch, H., J. Solid State Chem., 177, 1789(2004).Google Scholar
17. Fabregat-Santiago, F., García-Cañadas, J., Palomares, E., Clifford, J. N., Haque, S. A., Durrant, J. R., Garcia-Belmonte, G. and Bisquert, J., J. Appl. Phys., 96, 6903(2004).Google Scholar
18. Nakade, S., Kanzaki, T., Wada, Y., and Yanagida, S., Langmuir, 21, 10803(2005).Google Scholar
19. Nakade, S., Saito, Y., Kubo, W., Kanzaki, T., Kitamura, T., Wada, Y. and Yanagida, S., Electrochem. Commun., 5, 804(2003).Google Scholar
20. Sakaguchi, S., Ueki, H., Kato, T., Kado, T., Shiratuchi, R., Takashima, W., Kaneto, K., and Hayase, S., J. Photochem. Photobio. A: Chem., 164, 117(2004).Google Scholar
21. Jessop, P. G., Ikariya, T., Noyori, R., Nature, 368, 231(1994).Google Scholar
22. Schlichthorl, G., Hung, S. Y., Spraque, J., and Frank, A. J., J. Phys. Chem. B, 101, 8141(1997)Google Scholar
23. Peter, L. M., and Wijayatha, K. G. U., Electrochim. Acta., 45, 4543(2000)Google Scholar
24. Yoshida, T., Oekermann, T., Okabe, K., Schlettwein, D., Funabiki, K., and Minoura, H., Electrochem., 70, 470(2002).Google Scholar
25. Krüger, Jessica, Bach, Udo, and Grätzel, Michael, Adv. Mater., 12, 447(2000)Google Scholar
26. Nazeerudin, M. K., Kay, A., Rodicio, I., Humphry-Baker, R., Muller, E., Liska, P., Vlachopoulos, N., Grätzel, M., J. Am. Chem. Soc., 115, 6382(1993).Google Scholar
27. Renouard, T., Fallahpour, R. -A., Nazeeruddin, M. K., Humphry-Baker, R., Gorelsky, S. I., Lever, A. B. P., Grätzel, M., Inorg. Chem., 41, 367(2002).Google Scholar
28. 4. Amadelli, R., Argazzi, R., Bignozzi, C. A., Scandola, F., J. Am. Chem. Soc., 112, 7099(1990).Google Scholar
29. Wang, Z. -S., Huang, C. -H., Zhang, B. -W., Hou, Y. -Y., Xie, P. -H., Qian, H. -J., Ibrahim, K., New J. Chem., 24, 567(2000).Google Scholar
30. Wang, Z. -S., Li, F. -Y., Huang, C. -H., Wang, L., Wei, M., Jim, L. -P., Li, N. -Q., J. Phys. Chem. B, 104, 9676(2000).Google Scholar
31. Z. -Wang, S., Hara, K., Dan-oh, Y., Kasada, C., Shinpo, A., Suga, S., Arakawa, H., Sugihara, H., J. Phys. Chem. B, 109, 3907(2005).Google Scholar
32. Kim, Y. -G., Walker, J., Samuelson, L. A., Kumar, J., Nano Lett., 3, 523(2003).Google Scholar
33. Senadeera, G. K. R., Nakamura, K., Kitamura, T., Wada, Y., Yanagida, S., Appl. Phys. Lett., 83, 5470(2003).Google Scholar
34. Nazeeruddin, M. K., Pechy, P., Renouard, T., Zakeeruddin, S. M., Humphry-Baker, R., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G. B., Bignozzi, C. A., Grätzel, M., J. Am. Chem. Soc., 123, 1613(2001).Google Scholar
35. Z. -Wang, S., Yamaguchi, T., Sugihara, H., Arakawa, H., Langmuir, 21, 4272(2005).Google Scholar
36. Hobson, L. J., Ozu, H., Yamaguchi, M., and Hayase, S., J. Electrochem. Soc., 148, 1185(2001).Google Scholar
37. Usui, H., Matui, H., Tanabe, N., Yanagida, S., J. Photochem. Photobial. A: Chem., 164, 97(2004).Google Scholar
38. Kubo, W., Murakoshi, K., Kitamura, T., Yoshida, S., Haruki, M., Hanabusa, K., Shirai, H., Wada, Y., and Yanagida, S., J. Phys. Chem. B, 105, 12809(2001).Google Scholar
39. Kawano, Ryuji and Watanabe, Masayoshi, Chem. Commun., 2003, 330331 Google Scholar