Skip to main content Accessibility help

Fabrication of High Performance Organic Thin Film Transistor Arrays and Application to 5-inch Flexible Displays


We have demonstrated a 5-inch flexible color liquid crystal display (LCD) and organic light emitting display (OLED) driven by low-voltage operation organic TFT. In order to achieve high-quality and high-resolution moving images, OTFTs with high performances such as a high mobility, high ON/OFF ratio, low sub-threshold slope (SS) and low operating voltage, are developed. We fabricated pentacene-based low-voltage operation OTFT with a Ta2O5 gate dielectric prepared at a low temperature process. The resulting OTFT array showed a high mobility of 0.3-0.4 cm2/Vs, ON/OFF ratio over 107, VTH=2.7V, and low SS=0.3 V/decade. OTFTs with solution-processable materials such as fluoropolymer gate dielectric and liquid-crystalline semiconducting polymers, PBTTT, were also investigated. Electrical characteristics and stabilities of these devices will be discussed. In the final section, we will demonstrate OTFT-driven flexible displays. Both of the flexible LC device and the OLED device were successfully integrated on the pentacene-based OTFT arrays. Printing and lamination techniques were introduced to assemble the flexible LC device. Phosphorescent polymer materials, which can be patterned by ink-jet printing, were used for emitting layer of OLED. Color moving images were successively shown on the resulting 5-inch displays using an active-matrix driving technique of the OTFT at a low driving voltage of 15V.



Hide All
1. Klauk, H., Halik, M., Zschieschang, U., Schmid, G., Radlik, W., and Weber, W.: J. Appl. Phys. 92, 5159 (2002).
2. McCulloch, I., Heeney, M., Bailey, C., Genevicius, K., MacDonald, I., Shkunov, M., Sparrowe, D., Tierney, S., Wagner, R., Zhang, W., Chabinyc, M. L., Kline, R. J., McGehee, M. D., and Toney, M. F., Nat. Mater. 5, 328 (2006).
3. Huitema, E., Gelinck, G., van der Putten, B., Cantatore, E., Kuijk, K., Hart, K., and de Leeuw, D., J. Soc. Inf. Dis. 10, 195 (2002).
4. Sekitani, T., nakajima, H., Maeda, H., Fukushima, T., Aida, T., hata, K., and Someya, T., Nature Mater. 8, 494 (2009).
5. Yagi, I., Hirai, N., Miyamoto, Y., Noda, M., Imaoka, A., Yoneya, N., Nomoto, K., Kasahara, J., Yumoto, A., and Urabe, T., J. Soc. Inf. Dis. 16, 15 (2008).
6. Iino, Y., Inoue, Y., Fujisaki, Y., Fujikake, H., Sato, H., Kawakita, M., Tokito, S., and Kikuchi, H., Jpn. J. Appl. Phys. 42, 299 (2003).
7. Fujisaki, Y., Sato, H., Takei, T., Yamamoto, T., Fujikake, H., Tokito, S., and Kurita, T., J. Soc. Inf. Dis. 16, 1251 (2008).
8. Mizukami, M., Hirohata, N., Iseki, T., Ohtawara, K., Tada, T., Yagyu, S., Abe, T., Suzuki, T., Fujisaki, Y., Inoue, Y., Tokito, S. and Kurita, T., IEEE Electron Dev. Lett. 27, 249 (2006).
9. Veres, J., Ogier, S., Lloyd, G., and Leeuw, D. de.: Chem. Mater. 16, 4543 (2004).
10. Umeda, T., Kumaki, D., and Tokito, S., Org. Electron. 9, 545 (2008).
11. Yamamoto, T. and Takimiya, K.: J. Am. Chem. Soc. 129, 2224 (2007).
12. Umeda, T., Kumaki, D., and Tokito, S., J. Appl. Phys. 101, 054517 (2007).
13. De Vusser, S., Steudel, S., Myny, K., Genoe, J., and Heremans, P., Appl. Phys. Lett. 88, 103501 (2006).
14. Sato, H., Fujikake, H., Kikuchi, H., Kurita, T., and Sato, F., Liquid Crystal. 32, 221 (2005).
15. Fukagawa, H., Watanabe, K., Tsuzuki, T., and Tokito, S., Appl. Phys. Lett. 93, 133312 (2008).
16. Suzuki, M., Fukagawa, H., Nakajima, Y., Tsuzuki, T., Takei, T., Yamamoto, T., and Tokito, S., J. Soc. Inf. Dis. 17, 1037 (2009).
17. Nakajima, Y., Takei, T., Fujisaki, Y., Suzuki, M., Fukagawa, H., Motomura, G., Sato, H., Yamamoto, T., and Tokito, S., Proc. of Euro. Display'09. 21.3, (2009).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed