Skip to main content Accessibility help

Fabrication of Crystalline Semiconductor Nanowires by Vapor-Liquid-Solid Glancing Angle Deposition (VLS-GLAD) Technique

  • Arif S. Alagoz (a1) and Tansel Karabacak (a1)


Vapor-liquid-solid (VLS) method has become one of the few and most powerful bottom-up single crystal nanowire growth techniques in nanotechnology due to its easy scalability from micro to nano feature sizes, high throughput, relatively low cost, and its applicability to various semiconductor materials. On the other hand, control of growth direction and crystal orientation of nanowires, which determine their electrical, optical, and mechanical properties, stand as major issues in VLS technique. In this study, we demonstrate a new vapor-liquid-solid glancing angle deposition (VLS-GLAD) fabrication approach to produce crystalline semiconductor nanowires with controlled geometry. VLS-GLAD is a physical vapor deposition nanowire fabrication approach based on selective deposition of nanowire source atoms onto metal catalyst nanoislands placed on a crystal wafer. In this technique, collimated obliquely incident flux of source atoms selectively deposit on catalyst islands by using “shadowing effect”. Geometrical showing effect combined with conventional VLS growth mechanism leads to the growth of tilted crystalline semiconductor nanowire arrays. In this study, we report morphological and structural properties of tilted single crystal germanium nanowire arrays fabricated by utilizing a conventional thermal evaporation system. In addition to the tilted geometry, by introducing substrate rotation, nanowires with various morphologies including helical, zig-zag, or vertical shapes can be fabricated. Engineering crystalline nanowire morphology by using VLS-GLAD have the potential of enabling control of optical, electrical, and mechanical properties of these nanostructures leading to the development of novel 3D nano-devices.



Hide All
1. Alivisatos, A. P., Science 271, 5251 (1996).
2. Schmidt, V., Wittemann, J. V., Senz, S., and Gosele, U., Adv Mater 21, 2526 (2009).
3. Geim, A. K., Science 324, 5934 (2009).
4. Wagner, R. S., and Ellis, W. C., Appl. Phys. Lett. 4, 5 (1964).
5. Wagner, R. S., and Ellis, W. C., Transactions of the Metallurgical Society of Aime 233, 6 (1965).
6. Wagner, R. S., and Doherty, C. J., J. Electrochem. Soc. 113, 12 (1966).
7. Morales, A. M., and Lieber, C. M., Science 279, 5348 (1998).
8. Wang, X. D., Song, J. H., Liu, J., and Wang, Z. L., Science 316, 5821 (2007).
9. Duan, X. F., Huang, Y., Cui, Y., Wang, J. F., and Lieber, C. M., Nature 409, 6816 (2001).
10. Wang, J. F., Gudiksen, M. S., Duan, X. F., Cui, Y., and Lieber, C. M., Science 293, 5534 (2001).
11. Cui, Y., and Lieber, C. M., Science 291, 5505 (2001).
12. Huang, Y., Duan, X. F., Cui, Y., Lauhon, L. J., Kim, K. H., and Lieber, C. M., Science 294, 5545 (2001).
13. Cui, Y., Wei, Q. Q., Park, H. K., and Lieber, C. M., Science 293, 5533 (2001).
14. Law, M., Greene, L. E., Johnson, J. C., Saykally, R., and Yang, P. D., Nature Materials 4, 6 (2005).
15. Tsakalakos, L., Balch, J., Fronheiser, J., Korevaar, B. A., Sulima, O., and Rand, J., Appl. Phys. Lett. 91, 23 (2007).
16. Kelzenberg, M. D., Turner-Evans, D. B., Kayes, B. M., Filler, M. A., Putnam, M. C., Lewis, N. S., and Atwater, H. A., Nano Letters 8, 2 (2008).
17. Willander, M., Nur, O., Zhao, Q. X., Yang, L. L., Lorenz, M., Cao, B. Q., Perez, J. Z., Czekalla, C., Zimmermann, G., Grundmann, M., Bakin, A., Behrends, A., Al-Suleiman, M., El-Shaer, A., Mofor, A. C., Postels, B., Waag, A., Boukos, N., Travlos, A., Kwack, H. S., Guinard, J., and Dang, D. L. S., Nanotechnology 20, 33 (2009).
18. Robbie, K., and Brett, M. J., Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films 15, 3 (1997).
19. Karabacak, T., Singh, J. P., Zhao, Y. P., Wang, G. C., and Lu, T. M., Phys. Rev. B 68, 12 (2003).
20. Singh, J. P., Karabacak, T., Ye, D. X., Liu, D. L., Picu, C., Lu, T. M., and Wang, G. C., J. Vac. Sci. Technol. B 23, 5 (2005).
21. Choi, W. K., Li, L., Chew, H. G., and Zheng, F., Nanotechnology 18, 38 (2007).
22. Patzig, C., and Rauschenbach, B., Journal of Vacuum Science & Technology a 26, 4 (2008).
23. Chang, C. H., Yu, P., and Yang, C. S., Appl. Phys. Lett. 94, 5 (2009).
24. Zhang, H. X., and Feng, P. X., Journal of Physics D-Applied Physics 42, 2 (2009).
25. Haynes, C. L., and Van Duyne, R. P., J Phys Chem B 105, 24 (2001).
26. Prevo, B. G., Kuncicky, D. M., and Velev, O. D., Colloids and Surfaces A-Physicochemical and Engineering Aspects 311, 13 (2007).


Related content

Powered by UNSILO

Fabrication of Crystalline Semiconductor Nanowires by Vapor-Liquid-Solid Glancing Angle Deposition (VLS-GLAD) Technique

  • Arif S. Alagoz (a1) and Tansel Karabacak (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.