Skip to main content Accessibility help

Extended Defects in Fe-Implanted InP After Thermal Annealing

  • C. Frigeri (a1), C. Bocchi (a1), A. Carnera (a2), A. Gasparotto (a2), N. Gambacorti (a1) and F. Longo (a1)...


The recovery of the implant-induced damage and the defects present after thermal annealing at 650 °C in Fe-implanted InP have been investigated by TEM, RBS and X-ray diffractometry as a function of the annealing time that was varied betweeen 0.5 and 2 h. The near-surface damaged layer was removed only for annealing times ≥ 1.5 h. The annealed samples contained stacking fault tetrahedra of vacancy type, extrinsic dislocation loops and microdefects. These extended defects were mostly localized in a band corresponding to the region of transition between amorphous top layer and crystalline substrate as was detected in the as-implanted sample. Stacking fault tetrahedra and loops have also been observed before and beyond this band, respectively. Such defects could be due to either shear strains at the recrystallization front or implant-induced point defects.



Hide All
1 Pearton, S.J., Mat. Sci. Rep. 4, 313 (1990).
2 Donelly, J.P. and Hurwitz, C.E., Solid State Electron. 21, 475 (1978).
3 Gauneau, M., L'Haridon, H., Rupert, A., and Salvi, M., J. Appl. Phys. 53, 6823 (1982).
4 Ullrich, H., Knecht, A., Bimberg, D., Krautle, H., and Schlaak, W., J. Appl. Phys. 70, 2604 (1991).
5 Ullrich, H., Knecht, A., Bimberg, D., Krautle, H., and Schlaak, W., J. Appl. Phys. 72, 3514 (1992).
6 Gasparotto, A., Camera, A., Arzenton, G., Tromby, M., Pellegrino, S., and Vidimari, F., Caldironi, M., Nucl. Instr. Meth. B 80–81, 773 (1993).
7 Zheng, P., Ruault, M.-O., Kaitasov, O., Crestou, J., Descouts, B., Krauz, P., and Duhamel, N., J. Phys. D 23, 877(1990).
8 Zheng, P., Ruault, M.-O., Denanot, M.F., Descouts, B., and Krauz, P., J. Appl. Phys. 69, 197 (1991).
9 Kringhøj, P., Hansen, J.L., and Shiryaev, S. Yu., J. Appl. Phys. 72, 2249 (1992).
10 Auvray, P., Guivarc'h, A., L'Haridon, H., Pelous, G., Salvi, M., and Henoc, P., J. Appl. Phys. 53, 6202 (1982).
11 Schwarz, S.A., Schwartz, B., Sheng, T.T., Singh, S., and Tell, B., J. Appl. Phys. 58, 1698 (1985).
12 Vidimari, F., Caldironi, M., Di Paola, A., Chen, R., and Pellegrino, S., Electron. Lett. 27, 816 (1991).
13 Halliwell, M. A. G., Lyons, M. H., and Hill, M. J., J. Crystal Growth 68, 523 (1984).
14 Dahmen, U., Ultramicrosc. 30, 102 (1989).
15 Frigeri, C., Camera, A., and Gasparotto, A., Appl. Phys. A, submitted.
16 De Cooman, B.C., McKernan, S., Carter, C.B., Ralston, J.R., Wicks, G.W., and Eastman, L.F., Phil. Mag. Lett. 56, 85 (1987).
17 Coene, W., Bender, H., and Amelinckx, S., Phil. Mag. A 52, 369 (1985).
18 Van Landuyt, J., De Veirman, A., Vanhellemont, J., and Bender, H., Inst. Phys. Conf. Ser. 100, 1 (1989).
19 Christel, L.A. and Gibbons, J.F., J.Appl. Phys. 52, 5050 (1981).
20 Comer, J.J., Eirug Davies, D., and Lorenzo, J.P., J. Electrochem. Soc. 127, 1827 (1980).
21 Pearson, W.B., A Handbook of Lattice Spacings and Structures of Metals and Alloys. (Pergamon, Oxford, 1967), vol. 2. See also ASTM cards.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed