Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-19T05:59:14.510Z Has data issue: false hasContentIssue false

Explosive Thermal Decomposition Mechanism of NTO

Published online by Cambridge University Press:  10 February 2011

David J. Beardall
Affiliation:
Chemistry Department, University of Utah, Salt Lake City, UT 84112, wight@chemistry.utah.edu
Tod R. Botcher
Affiliation:
Chemistry Department, University of Utah, Salt Lake City, UT 84112, wight@chemistry.utah.edu
Charles A. Wight
Affiliation:
Chemistry Department, University of Utah, Salt Lake City, UT 84112, wight@chemistry.utah.edu
Get access

Abstract

The initial step of the thermal decomposition of NTO (5-nitro-2,4-dihydro-3H-1,2,4- triazol-3-one) is determined by pulsed infrared laser pyrolysis of thin films. Rapid heating of the film and quenching to 77 K allows one to trap the initial decomposition products in the condensed phase and analyze them using transmission Fourier-transform infrared spectroscopy. The initial decomposition product is CO2; NO2 and HONO are not observed. We propose a new mechanism for NTO decomposition in which CO2 is formed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lee, K.-Y. and Gilardi, R.in Structure and Properties of Energetic Materials, edited by Liebenberg, K.H., Armstrong, R.W., and Gilman, J.J. (Mater. Res. Soc. Proc. 296, Pittsburgh, PA, 1993) p. 237.Google Scholar
2. Ritchie, J.P., J. Org. Chem. 54, 3553, (1989).Google Scholar
3. Finch, A., Gardner, P.J., Head, A.J., and Majdi, H.S., J. Chem. Thermodynamics 23, 1169 (1991).Google Scholar
4. Rothgery, E.F., Audette, D.E., Wedlich, R.C. and Csejka, D.A., Thernochimica Acta, 185, 235 (1991).Google Scholar
5. Yi, X., Rongzu, H., Xiyou, W., Xiayun, F. and Chunhua, Z., Thermochimica Acta, 189, 283 (1991).Google Scholar
6. Williams, G.K., Palopoli, S.F. and Brill, T.B., Combust. Flame, 98, 197 (1994).Google Scholar
7. Burkey, T.J. and Shackelford, S.A., Thermal Decomposition of NTO and NTO/TNT Mixtures, Report No. 49620-88-C-0053, 1992.Google Scholar
8. Prabhakaran, K.V., Naidu, S.R. and Kurian, E.M., Thermochimica Acta, 241, 199 (1994).Google Scholar
9. Williams, G.K. and Brill, T.B., J. Phys. Chem. 99, 12536 (1995).Google Scholar
10. Östmark, H., Bergman, H., Åqvist, G., Langlet, A. and Persson, B., in Proceedings of the 16th International Pyrotechnics Seminar, (1991) p. 874.Google Scholar
11. Östmark, H., FOA Report D-20178 2.3, National Defense Research Establishment, Sundbyberg, Sweden, 1991.Google Scholar
12. Menapace, J.A., Marlin, J.E., Bruss, D.R. and Dascher, R.V., J. Phys. Chem. 95, 5509 (1991).Google Scholar
13. Oxley, J.C., Smith, J.L., Zhou, Z. and Mckenney, R.L., J. Phys. Chem. 99, 10383 (1995).Google Scholar
14. Fan, L., Dass, C. and Burkey, T., private communication.Google Scholar
15. Wight, C.A. and Botcher, T.R. J. Am. Chem. Soc., 114, 8303 (1992).Google Scholar
16. Botcher, T.R. and Wight, C.A., J. Phys. Chem., 97, 9149 (1993).Google Scholar
17. Botcher, T.R. and Wight, C.A. in Structure and Properties of Energetic Materials, edited by Liebenberg, D.H., Armstrong, R.W. and Gilman, J.J. (Mater. Res. Soc. Proc.296, Pittsburgh, PA, 1993) p. 47.Google Scholar
18. Botcher, T.R. and Wight, C.A., J. Phys. Chem., 98, 5441 (1994).Google Scholar