Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T19:11:35.917Z Has data issue: false hasContentIssue false

Experimental studies of surface relief gratings on polymer Films

Published online by Cambridge University Press:  10 February 2011

X. L. Jiang
Affiliation:
Departments of Physics
D. Y. Kim
Affiliation:
Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854
L. Li
Affiliation:
Departments of Physics
V. Shivshankar
Affiliation:
Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854
J. Kumar
Affiliation:
Departments of Physics
S. K. Tripathy
Affiliation:
Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854
Get access

Abstract

We report our investigation on the recording of surface relief gratings on azobenzene containing polymer films by laser beams with different polarizations. Experimental evidence shows that it is necessary to have spatial variations of both magnitude and direction of net electric field in the films to record surface relief gratings. Large surface modulation (> 3500 Å) and high diffraction efficiency (about 30%) were obtained under optimized recording conditions. In addition, polarization dependent erasure of the gratings by a single laser beam has been studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Todrov, T., Nikolova, L., Tomova, N., and Dragostinova, V., Appl. Opt. 23, 4588 (1984).Google Scholar
2. Todrov, T., Nikolova, L., Tomova, N., and Dragostinova, V., IEEE J. Quant. Elet. QE-22, 1262 (1985).Google Scholar
3. Couture, J. A. and Lessard, R. A., Appl. Opt. 27, 3368 (1988).Google Scholar
4. Rochon, P., Gosselin, J., Natansohn, A., and Xie, S., Appl. Phys. Lett. 60, 4 (1992).Google Scholar
5. Natansohn, A., Rochon, P., Gosselin, J., and Xie, S., Macromolecules 25, 2268 (1992).Google Scholar
6. Jones, C. and Day, S., Nature 351, 15 (1991).Google Scholar
7. Anderle, K., Birenheide, R., Werner, M. J. A., and Wendorff, J. H., Liq. Cryst. 9, 691 (1991).Google Scholar
8. Rochon, P., Batalla, E., and Natansohn, A., Appl. Phys. Lett. 66, 136 (1995).Google Scholar
9. Kim, D. Y., Li, L., Kumar, J., and Tripathy, S. K., Appl. Phys. Lett. 66, 1166 (1995).Google Scholar
10. Kim, D. Y., Li, L., Jiang, X. L., Shivshankar, V., Kumar, J., and Tripathy, S. K., Macromolecules (to be published ).Google Scholar
11. Mandal, B., Jeng, R., Kumar, J., and Tripathy, S. K., Makromol. Chem., Rapid Commun. 123, 607 (1991).Google Scholar
12. Chen, Y. M., Jeng, R. J., Li, L., Zhu, X., Kumar, J., and Tripathy, S., Mol. cryst. Liq. cryst. Sci. Techinol - Sec. B: Nonlinear Optcis 4, 71 (1993).Google Scholar
13 Lvanov, M., Todorov, T., Nikolova, L., Tomova, N., and Dragostinova, V., Appl.Phys. Lett. 66 24 (1995)Google Scholar