Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-18T00:20:08.105Z Has data issue: false hasContentIssue false

Experimental and Theoretical Analysis of the Hall-Mobility in N-Type Bulk 6H- and 4H-SiC

Published online by Cambridge University Press:  10 February 2011

S. T. G. Müller
Affiliation:
Materials Science Institute VI, University Erlangen-Niirnberg, Martensstr. 7, D-91058 Erlangen Germany
D. Hofmann
Affiliation:
Materials Science Institute VI, University Erlangen-Niirnberg, Martensstr. 7, D-91058 Erlangen Germany
A. Winnacker
Affiliation:
Materials Science Institute VI, University Erlangen-Niirnberg, Martensstr. 7, D-91058 Erlangen Germany
Get access

Abstract

The electrical properties of nitrogen doped n-type 6H- and 4H-SiC bulk crystals grown by the Lely- or modified Lely-method have been characterized by Hall-measurements. The doping densities were determined by a fit of the neutrality equation to the experimental data, accounting for in-equivalent lattice sites and the temperature dependence of the effective density-of- states-mass extracted from recent results of ab-initio-calculations of the 6H- and 4H-SiC bandstructure [1]. The theoretical analysis of the Hall-mobility is based on an extended form of the Rode-Nag iteration algorithm [2]. The calculation scheme considers all relevant elastic and inelastic scattering mechanisms. the anisotropy of the crystal modifications and the possible effect of spatial inhomogeneities in the distribution of donors, acceptors or in the related electron system. Within these concepts it is possible to achieve a quantitative agreement between theoretical and experimental mobility data in 4H- and 6H-SiC over the whole temperature range of band conduction. New values for the acoustic deformation potentials Eac [15.0±0.5 eV (6H), 14.8±0.5 eV (4H)] and the coupling constants for intervalley phonon scattering Dint [2.3 ± 0.1 × 109eV/cm (6H), 2.6 ± 0.1 × 109eV/cm (4H)] are given.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wellenhofer, G., RÖssler, U., phys. stat. sol. (b) 202, 107(1997)10.1002/1521-3951(199707)202:1<107::AID-PSSB107>3.0.CO;2-93.0.CO;2-9>Google Scholar
[2] Nag, B.R., Electron Transport in Compound Semiconductors, vol. 11 of Springer Series in Solid-State Sciences (Springer-Verlag, Berlin, 1980)10.1007/978-3-642-81416-7Google Scholar
[3] Pattrick, L., J. Appl. Phys. 38, 50(1967)10.1063/1.1709007Google Scholar
[4] Daal, J.J., Philips Res. Rept. Suppl.3 70, 1 (1965)Google Scholar
[5] Wessels, B.W., Gatos, H.C., J. Phys. Chem. Solids 38, 345(1977)10.1016/0022-3697(77)90078-6Google Scholar
[6] Son, N.T., Kordina, O., Konstantinov, A.O., Chen, W.M., Sörman, E., Monemar, B., Janzdn, E., Appl. Phys. Lett. 65 3209(1994)10.1063/1.112956Google Scholar
[7] Harmia, H., Nakashima, S., Uemura, T., J. Appl. Phys. 78, 1996(1995)10.1063/1.360174Google Scholar
[8] Volm, D., Meyer, B.K., Hofmann, D.M., Chen, W.M., Son, N.T., Persson, C., Lindefelt, U., Kordina, O.. Sdrmann, E., Konstantinov, A.O., Monemar, B., Phys. Rev. B 53 15409(1996)10.1103/PhysRevB.53.15409Google Scholar
[9] Tsukioka, K., Inst. Phys. Conf. Ser. 142, 397(1996)Google Scholar
[10] Schadt, M., Pensl, G., Devaty, R.P., Choyke, W.J., Stein, R., Stephani, D., Appl. Phys. Lett. 65, 3120(1994)Google Scholar
[11] Mfiller, St. G., Eckstein, R., Hartung, W., Hofmann, D., Kölbl, M., Pensl, G., Schmitt, E., Schmitt, E.J., Weber, A.-D., Winnacker, A., Mat. Sci. For. 264–268, 33 (1998)Google Scholar
[12] van der Pauw, L.J., Philips Res. Rep. 13, 1 (1958)Google Scholar
[13] Suttrop, W., Pensl, G., Choyke, W.J., Stein, R., Leibenzeder, S., J. Appl. Phys. 72, 3708(1992)10.1063/1.352318Google Scholar
[14] Gétz, W., Schöner, A.. Pensl, G., Suttrop, W., Choyke, W.J., Stein, R., S. Leibenzeder 73, 3332(1993)Google Scholar
[15] Colwell, P.A., Klein, M.V., Phys. Rev. B 6, 498(1972)10.1103/PhysRevB.6.498Google Scholar
[16] Blakemore, J.S., semiconductor statistics, (Pergamon Press, Oxford, 1962)Google Scholar
[17] Shklovskii, B.I., Efros, A.L., Electronic Properties of Doped Semiconducters, vol. 45 of Springer Series in Solid-State Sciences (Springer Verlag, Berlin, 1984)10.1007/978-3-662-02403-4Google Scholar
[18] Molnar, B., J. Mat. Res. 7, 2465(1992)10.1557/JMR.1992.2465Google Scholar
[19] Ikeda, M., Matsunami, H., Tanaka, T., Phs. Rev. B 22, 2842(1980)10.1103/PhysRevB.22.2842Google Scholar
[20] Wysmolek, A., Mrozirski, P., Dwiliriski, R., Vlaskina, S., Kamifiska, M., Acta Physica Polnica A 87, 437(1995)10.12693/APhysPolA.87.437Google Scholar
[21] Vlaskina, S.I., Lee, Y.P., Rodionov, V.E., Kamiriska, M., Mat. Sci. For. 264–268, 577 (1998)Google Scholar
[22] Stratton, R., J. Phys. Chem. Solids 23, 1011(1962)10.1016/0022-3697(62)90159-2Google Scholar
[23] Choyke, W.J., Devaty, R.P., Clemen, L.L., MacMillan, M.F., Yoganathan, M., Pensl, G., Inst. Phys. Conf. Ser. 142, 257(1996)Google Scholar
[24] Kinoshita, T., Itoh, K.M., Muto, J., Schadt, M., Pensl, G., Takeda, K., Mat. Sci. For. 264–268, 295 (1998)Google Scholar
[25] Rutsch, G., Devaty, R.P., Langer, D.W., Rowland, L.B., Choycke, W.J., Mat. Sci. For. 264268, 517 (1998)Google Scholar
[26] Mickevičius, R., Zhao, J.H., Mat. Sci. For. 264268, 291 (1998)Google Scholar