Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T01:02:15.696Z Has data issue: false hasContentIssue false

Excitation and DE-Excitation of Yb3+ in Inp and Er3+ in Si: Photoluminescence and Impact Ionization Studies

Published online by Cambridge University Press:  10 February 2011

T. Gregorkiewicz
Affiliation:
Van der Waals - Zeeman Institute, University of Amsterdam, Valckenierstraat 65-67, NL-1018 XE Amsterdam, the Netherlands, tom@phys.uva.nl
I. Tsimperidis
Affiliation:
Van der Waals - Zeeman Institute, University of Amsterdam, Valckenierstraat 65-67, NL-1018 XE Amsterdam, the Netherlands, tom@phys.uva.nl
C. A. J. Ammerlaan
Affiliation:
Van der Waals - Zeeman Institute, University of Amsterdam, Valckenierstraat 65-67, NL-1018 XE Amsterdam, the Netherlands, tom@phys.uva.nl
F. P. Widdershoven
Affiliation:
Nederlandse Philips Bedrijven B.V., Prof. Holstlaan 4, NL-5656 AA Eindhoven, the Netherlands
N. A. Sobolev
Affiliation:
Ioffe Physical-Technical Institute, Politechnicheskaya ul. 26, St Petersburg, Russia
Get access

Abstract

In the paper the existing information on the optical excitation of the erbium ion in crystalline silicon is critically reviewed. The proposed excitation mechanism is compared to the one which is believed to be responsible for the luminescence of ytterbium in indium phosphide. To this end the influence of constant and microwave electric field on the photoluminescence of both systems is inspected. It is shown that, although both systems show some similarities, their analogy is limited.

The particular role of excitons and electrons in both the excitation as well as the de-excitation mechanism is investigated for the Si:Er system. The results of photoluminescence decay studies (T=4.2 K) are presented. It is argued that a nonradiative energy transfer to conduction electrons is responsible for the limitation of the energy transfer to the Er core and for its nonradiative recombination. Also, a prominent role of excitons in the energy transfer mechanism is confirmed. Finally, the origin of the 873 meV photoluminescence band recently reported in Er-implanted Si is discussed in relation to a possible defect-mediated activation of Er.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Aszodi, G., Weber, J., Uihlein, Ch., Pu-lin, L., Ennen, H., Kaufmann, U., Schneider, J., and Windscheif, J., Phys. Rev. B31, 7767 (1985).Google Scholar
2. de Maat-Gersdorf, I., Gregorkiewicz, T., Ammerlaan, C.A.J., Christianen, P.C.M., and Maan, J.C., proceedings of this symposium.Google Scholar
3. Priolo, F., Franzò, G., Coffa, S., Polman, A., Libertino, S., Barklie, R., and Carey, D., J. Appl. Phys. 78, 3874 (1995).Google Scholar
4 Widdershoven, F.P. and Naus, J.P.M., Mat. Sci. Eng. B4, 71 (1989).Google Scholar
5. Klein, P.B., Solid State Commun. 65, 1097 (1988).Google Scholar
6. van den Hoven, G.N., Shin, J.H., Polman, A., Lombardo, S., and Campisano, S.V., J. Appl. Phys. 78, 2642 (1995).Google Scholar
7. Abakumov, V.N., Perel, V.I., and Yassievich, I.N. in Nonradiative Recombination in Semiconductors,Modern Problems in Condensed Matter Science 33, edited by Agranovich, V.M. and Maradudin, A.A., Elsevier Science Publishers B.V., Amsterdam 1991, pp. 172188.Google Scholar
8. Tsimperidis, I., Gregorkiewicz, T., Ammerlaan, C.A.J., Godlewski, M., Scholz, F., and Lambert, B., J. Appl. Phys. 77, 1523 (1995); I. Tsimperidis, T. Gregorkiewicz, and C.A.J. Ammerlaan, to be published.Google Scholar
9. Chen, W. M., Buyanova, I.A., Henry, A., Ni, W.-X., Hansson, G.V., and Monemar, B., Mat. Sci. Forum 196–201, 473 (1995).Google Scholar
10. Gregorkiewicz, T., Liesert, B.J.Heijmink, Tsimperidis, I., de Maat-Gersdorf, I., Ammerlaan, C.A.J., Godlewski, M., and Scholz, F. in Rare Earth Doped Semiconductors, edited by Pomrenke, G.S., Klein, P.B., and Langer, D.W. (Mater. Res. Soc. Proc. 301, Pittsburgh, PA 1993), pp. 239250.Google Scholar
11. Tsimperidis, I., Gregorkiewicz, T., and Ammerlaan, C.A.J., Mat. Sci. Forum 196–201, 591 (1995).Google Scholar
12. Bresler, M.S., Gusev, O.B., Yassievich, I.N., and Zakharchenya, B.P., to be appear in Solid State (Fizika Tverdogo Tela 38, 5 (1996).Google Scholar
13. Thao, D.T.Xuan, Gregorkiewicz, T., and Ammerlaan, C.A.J., to be published.Google Scholar
14. Efeoglu, E., Evans, J.H., Jackman, T E., Hamilton, B., Houghton, D.C., Langer, J.M., Peaker, A.R., Perovic, D., Poole, J., Ravel, N., Hemment, P., and Chan, C.W., Semicond. Sci. Technol. 8, 236 (1993).Google Scholar
15. Michel, J., Palm, J., Gan, F., Ren, F.Y.G., Zheng, B., Dunham, S.T., and Kimerling, L.C., Mat. Sci. Forum 196–201, 585 (1995).Google Scholar
16. Bresler, M.S., Gusev, O.B., Macoviichuk, M.I., Pak, P.E., Parshin, E.O., Shek, E.I., Sobolev, N.A., Yassievich, I.N., and Zakharchenya, B.P. in Tenth Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth and Transitional-Metals Ions, edited by Ryskin, A. and Masterov, V.F., Proc. SPIE 2706, pp. 3137 (1996).Google Scholar
17. Palm, J., Gan, F., and Kimerling, L.C. in - see Ref.[16].Google Scholar
18. Jung Shin, H., van den Hoven, G.N., and Polman, A., Appl. Phys. Lett. 67, 377 (1995).Google Scholar
19. Coffa, S., Franzò, G., Priolo, F., Polman, A., and Serna, R., Phys. Rev. B 49, 16313 (1994).Google Scholar
20. Sobolev, N.A., Alexandrov, O.V., Bresler, M.S., Gusev, O.B., Shek, E.I., Makoviichuk, M.I., and Parshin, E.O., Mat. Sci. Forum 196–201, 597 (1995).Google Scholar
21. Drozdov, N.A., Patrin, A.A., Tkachev, V.D., Pis'ma Zh. Eksp. Teor. Fiz. 23, 651 (1976); Sov. Phys. JETP Lett. 23, 597 (1976).Google Scholar
22. Vebbing, R.H., Wagner, P., Baumgart, H., and Queisser, H.J., Appl. Phys. Lett. 37, 1078 (1980).Google Scholar
23. Sauer, R., Weber, J., Stolz, J., Weber, E.R., Ktisters, K.-H., and Alexander, H., Appl. Phys. A36, 1(1985).Google Scholar