Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T00:35:26.368Z Has data issue: false hasContentIssue false

Excitation and De-Excitation Mechanisms of Rare-Earth Ions in III-V Compounds: Optically Detected Microwave-Induced Impact Ionization of Yb Dopant in Inp

Published online by Cambridge University Press:  21 February 2011

T. Gregorkiewicz
Affiliation:
Van der Waals - Zeeman Laboratorium, Universiteit van Amsterdam, Valckenierstraat 65-67, NL-1018 XE Amsterdam, The Netherlands
B.J. Heijmink Liesertr
Affiliation:
Van der Waals - Zeeman Laboratorium, Universiteit van Amsterdam, Valckenierstraat 65-67, NL-1018 XE Amsterdam, The Netherlands
I. Tsimperidis
Affiliation:
Van der Waals - Zeeman Laboratorium, Universiteit van Amsterdam, Valckenierstraat 65-67, NL-1018 XE Amsterdam, The Netherlands
I. de Maat-Gersdorf
Affiliation:
Van der Waals - Zeeman Laboratorium, Universiteit van Amsterdam, Valckenierstraat 65-67, NL-1018 XE Amsterdam, The Netherlands
C.A.J. Ammerlaan
Affiliation:
Van der Waals - Zeeman Laboratorium, Universiteit van Amsterdam, Valckenierstraat 65-67, NL-1018 XE Amsterdam, The Netherlands
M. Godlewski
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, PL-06-668 Warszawa, Poland
F. Scholz
Affiliation:
4 Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, D-7000 Stuttgart80, Germany
Get access

Abstract

The excitation mechanisms of rare-earth dopants in III-V semiconductors are being reviewed. The discussion is focused on ytterbium-doped InP crystals for which a particularly large amount of experimental data has been gathered. Here, the results obtained recently by optically detected microwave-induced impact ionization are being examined in detail. On the basis of the experimental findings it is argued that the intrashell luminescence is excited by an intermediate state involving binding of an exciton. Direct evidence for the existence of such a state, of pseudoacceptor type, will be given. The nonradiative recombination channel responsible for the fast decay of Yb luminescence will also be discussed and, for the first time, evidence for an Auger process will be presented. It will also be shown that the nonradiative channel may be effectively blocked by impact ionization of a participating carrier.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hemstreet, L.A. in Proceedings of the XIV International Conference on Defects in Semiconductors, Vols. 10–12 of Materials Science Forum, edited by Bardeleben, H.J. von (Trans Tech Publications, Aedermannsdorf, Switzerland, 1986), p. 85.Google Scholar
[2] Körber, W., Weber, J., Hangleiter, A., Benz, K.W., Ennen, H., and Müller, H.D., J. Cryst. Growth 79, 741 (1986).Google Scholar
[3] Whitney, P.S, Uwai, K., Nakagome, H., and Takahei, K., Appl. Phys. Lett. 53, 2074 (1988).Google Scholar
[4] Weber, J., Molassioti, A., Moser, M., Stupor, A., Scholz, F., Hörcher, G., Forchel, A., Hammel, A., Laube, G., and Weidlein, J., Appl. Phys. Lett. 53, 2525 (1988).Google Scholar
[5] Lambert, B., Corre, A. Le, Toudic, Y., Lhomer, C., Grandpierre, G., and Gauneau, M., J. Phys.: Condens. Matter 2, 479 (1990).Google Scholar
[6] Lambert, B., Toudic, Y., Grandpierre, G., Rupert, A., and Corre, A. Le, Electron. Lett. 24, 1446 (1988).Google Scholar
[7] Nakagome, H., Takahei, K., and Homma, Y., J. Cryst. Growth 85, 345 (1987).Google Scholar
[8] Thonke, K., Pressel, K., Bohnert, G., Stgpor, A., Weber, J., Moser, M., Molassioti, A., Hangleiter, A., and Scholz, F., Semicond. Sci. Technol. 5, 1124 (1990).Google Scholar
[9] Takahei, K., Taguchi, A., Nakagome, H., Uwai, K., and Whitney, P.S., J. Appl. Phys. 66, 4941 (1989).Google Scholar
[10] Kasatkin, V.A. and Savel'ev, V.P., Sov. Phys.-Semicond. 18, 1022 (1984).Google Scholar
[11] Kasatkin, V.A., Lavrent'ev, A.A., and Rodnyl, P.A., Soy. Phys.-Semicond. 19, 221 (1985).Google Scholar
[12] Körber, W. and Hangleiter, A., Appl. Phys. Lett. 52, 114 (1988).Google Scholar
[13] Robbins, D.J. and Dean, P.J., Adv. Phys. 27, 499 (1978).Google Scholar
[14] Przybylińska, H., Świątek, K., Stąpor, A., Suchocki, A., and Godlewski, M., Phys. Rev. B 40, 1748 (1989).Google Scholar
[15] Świątek, K. and Godlewski, M., Appl. Phys. Lett. 56, 2192 (1990).Google Scholar
[16] Lhomer, C., Lambert, B., Toudic, Y., Corre, A. Le, Gauneau, M., Cidrot, F., and Sermage, B., Semicond. Sci. Technol. 6, 916 (1991).Google Scholar
[17] Świątek, K., Suchocki, A., and Godlewski, M., Appl. Phys. Lett. 56, 195 (1990).Google Scholar
[18] For a review on cyclotron resonance, see: Lax, B., J. Magn. Magn. Mater. 11, 1 (1979).Google Scholar
[19] Smith, D.L., Pan, D.S., and McGill, T.C., Phys. Rev. B 12, 4360 (1975).Google Scholar
[20] Lipnik, A.A., Sov. Phys.-Solid State 3, 1683 (1962).Google Scholar
[21] Weman, H., Godlewski, M., and Monemar, B., Phys. Rev. B 38, 12525 (1988).Google Scholar
[22] Wang, F.P., Monemar, B., and Ahlström, M., Phys. Rev. B 39, 11195 (1989).Google Scholar
[23] Laube, G., Kohler, U., Weidlein, J., Scholz, F., Streubel, K., Dieter, R.J., Karl, N., and Gerdon, M., J. Cryst. Growth 93, 45 (1988).Google Scholar
[24] Liesert, B.J. Heijmink, Godlewski, M., Stupor, A., Gregorkiewicz, T., Ammerlaan, C.A.J., Weber, J., Moser, M., and Scholz, F., Appl. Phys. Lett. 58, 2237 (1991).Google Scholar
[25] Fischbach, J.U., Benz, G., Stath, N., Pilkuhn, M.H., and Benz, K.W., Solid State Coinmun. 11, 721 (1972).Google Scholar
[26] Fischbach, J.U., Benz, G., Stath, N., and Pilkuhn, M.H., Solid State Commun. 11, 725 (1972).Google Scholar
[27] Zakharenkov, L.F., Kasatkin, V.A., Kesamanly, F.P., Samorukov, B.E., and Sokolova, M.A., Sov. Phys.-Semicond. 15, 946 (1981).Google Scholar
[28] Godlewski, M., Weman, H., Wang, F.P., Monemar, B., Chen, W.M., and Zhao, Q.X., in Defects in Electronic Materials, edited by Stavola, M., Pearton, S.J., and Davies, G. (Materials Research Society, Pittsburgh, 1988), Vol. 104, p. 117.Google Scholar
[29] Klein, P.B., Solid State Commun. 65, 1097 (1988).Google Scholar
[30] Hopfield, J.J., Thomas, D.G., and Lynch, R.T., Phys. Rev. Lett. 17, 312 (1966).Google Scholar
[31] , Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, edited by Schulz, M. (Springer, Berlin, 1989), Vol. III/22b, p. 670.Google Scholar
[32] Bartolo, B. Di, Optical Interactions in Solids (Wiley, New York, 1968), p. 521.Google Scholar