Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-20T01:21:38.770Z Has data issue: false hasContentIssue false

Excimer Laser Induced Deposition of Bisrcacuo Htsc Thin Films and Buffer Layers -Depth Profiling by SNMS

Published online by Cambridge University Press:  01 January 1992

M. Lqrenz
Affiliation:
Universithät Leipzig, AG Dünnschichttechnik am Fachbereich Physik, Linnéstr. 5, 0-7010 Leipzig, Germany
H. Hochmuth
Affiliation:
Universithät Leipzig, AG Dünnschichttechnik am Fachbereich Physik, Linnéstr. 5, 0-7010 Leipzig, Germany
H. Börner
Affiliation:
Universithät Leipzig, AG Dünnschichttechnik am Fachbereich Physik, Linnéstr. 5, 0-7010 Leipzig, Germany
K. Unger
Affiliation:
Universithät Leipzig, AG Dünnschichttechnik am Fachbereich Physik, Linnéstr. 5, 0-7010 Leipzig, Germany
Get access

Abstract

Secondary Neutrals Mass Spectrometry SNMS was used to investigate interdiffusion processes in laser deposited BiSrCaCuO HTSC thin films on various substrate materials. The in-situ deposition of epitaxial Bi2Sr2Ca1Cu2O8+x films requires a substrate temperature just below the decomposition temperature of the 2212 -phase of BiSrCaCuO. This high substrate temperature of about 850°C seems to be the reason for interdiffusion processes of BiSrCaCuO films and MgO(100), YSZ(100) and Si(100) with YSZ or SrTiO3 buffer layers as substrate materials. Therefore, Tc(R=0) of BiSrCaCuO films on silicon with buffer layer is not higher than 70 K at present. SNMS depth profiling gives a more detailed insight into interdiffusion phenomena than other analytical techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wagner, P., Adrian, H. and Tomé-Rosa, C., Physica C 195, 258 (1992).Google Scholar
2. Schmitt, P., Schultz, L. and Saemann-Ischenko, G., Physica C 168, 475 (1990).Google Scholar
3. Balestrino, G., Marinelli, M., Milani, E., Paoletti, P. and Paroli, P., J. Appl. Phys. 70, 6939 (1991).Google Scholar
4. Vengalis, B., Flodstrtm, A. and Brazdeikis, A., Physica C 197, 64 (1992).Google Scholar
5. Lorenz, M., Becker, S., Dietze, H.-J., Schmitz, W., Brunner, B. and Renk, K.F., Physica C 182, 114 (1991).Google Scholar
6. Chin, T.S., Huang, J.Y., Perng, L.H., Huang, T.W., Yang, S.J. and Hsu, S.E., Physica C 192, 154 (1992).Google Scholar
7. Hesse, D., Klocke, V., Pfau, A., Güntherodt, G., Breuer, U., Albrecht, W. and Kurz, H., Physica C 185–189, 2121 (1991).Google Scholar
8. Hung, L.S., Agostinelli, J.A., Paz Pujalt, G.R. and Mir, J.M., Appl. Phys. Lett. 53, 2450 (1988).Google Scholar
9. Jaggi, N.K., Meskoob, M., Wahid, S.F. and Rollins, C.J., Appl. Phys. Lett. 53, 1551 (1988).Google Scholar
10. Mao, X.L., Berdahl, P., Russo, R.E., Liu, H.B. and Ho, J.C., Physica C 183, 167 (1991).Google Scholar
11. Das, S.K., Suryanarayanan, R. and Gorochov, O., Appl. Phys. Lett. 56, 1496 (1990).Google Scholar
12. Koinuma, H., Kawasaki, M., Nagata, S., Takeuchi, K. and Fueki, K., Jap. J. Appl. Phys. 27, L376 (1988).Google Scholar
13. Oechsner, H., in Topics in Current Physics, Vol. 37 (Springer, Berlin, Heidelberg, New York, 1984) pp. 6385.Google Scholar
14. Lorenz, M., Börner, H., Semmelhack, H.-C., Hochmuth, H., Fresenius, J. Anal. Chem. in pressGoogle Scholar
15. Dietze, H.-J., Becker, S., Phys. Stat. Sol. (a) 114, K193 (1989).Google Scholar
16. Peters, H., Skoda, L., Crecelius, G. and Adrian, H., Fresenius, J. Anal. Chem. 333, 343 (1989).Google Scholar